PHARMACY

PG – Syllabus

Code	Course	Credit Hours	Credit Points	Hrs./wk	Marks
M. Pharm. Speci	alisation for Pharmaceutics (MPH)				
Semester I					
MPH-PG-T101	Modern Pharmaceutical Analytical Techniques	4	4	4	100
MPH-PG-T102	Drug Delivery System	4	4	4	100
MPH-PG-T103	Modern Pharmaceutics	4	4	4	100
MPH-PG-T104	Regulatory Affair	4	4	4	100
MPH-PG-P105	Pharmaceutics Practical I	12	6	12	150
MPH-PG-C106	Seminar/Assignment	7	4	7	100
Total		35	26	35	650
Semester II					
MPH-PG-T201	Molecular Pharmaceutics (Nano Tech and Targeted DDS)	4	4	4	100
MPH-PG-T202	Advanced Biopharmaceutics & Pharmacokinetics	4	4	4	100
MPH-PG-2103	Computer Aided Drug Delivery System				
MPH-PG-T204	Cosmetic and Cosmeceuticals				
MPH-PG-P205	Pharmaceutics Practical II	12	6	12	150
MPH-PG-C206	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650
M. Pharm. Speci	alisation for Pharmaceutical Chemistry (MPC)				
Code	Course	Credit Hours	Credit Points	Hrs./wk	Marks
Semester I		•	•		
MPC-PG-T101	Modern Pharmaceutical Analytical Techniques	4	4	4	100
MPC-PG-T102	Advanced Organic Chemistry -I	4	4	4	100
MPC-PG-T103	Advanced Medicinal Chemistry	4	4	4	100
MPC-PG-T104	Chemistry of Natural Products	4	4	4	100
MPC-PG-P105	Pharmaceutical Chemistry Practical I	12	6	12	150
MPC-PG-C106	Seminar/Assignment	7	4	7	100
Total		35	26	35	650
Semester II					
MPC-PG-T201	Advanced Spectral Analysis	4	4	4	100
MPC-PG-T202	Advanced Organic Chemistry -II	4	4	4	100
MPC-PG-T203	Computer Aided Drug Design	4	4	4	100
MPC-PG-T204	Pharmaceutical Process Chemistry	4	4	4	100
MPC-PG-P205	Pharmaceutical Chemistry Practical II	12	6	12	150
MPC-PG-C206	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650
M. Pharma Spec	cialisation for Pharmacology (MPL)	1	1		
Code	Course	Credit Hours	Credit Points	Hrs./wk	Marks
Semester I					
MPL-PG-T101	Modern Pharmaceutical Analytical Techniques	4	4	4	100
MPL-PG-T102	Advanced Pharmacology-I	4	4	4	100
MPL-PG-T103	Pharmacological and Toxicological Screening Methods-I	4	4	4	100

MPL-PG-T104	Cellular and Molecular Pharmacology	4	4	4	100
MPL-PG-P105	Pharmacology Practical I	12	6	12	150
MPL-PG-C106	Seminar/Assignment	7	4	7	100
Total		35	26	35	650
Semester II					
MPL-PG-T201	Advanced Pharmacology II	4	4	4	100
MPL-PG-T202	Pharmacological and Toxicological Screening Methods-II	4	4	4	100
MPL-PG-T203	Principles of Drug Discovery	4	4	4	100
MPL-PG-T204	Clinical Research And Pharmacovigilance	4	4	4	100
MPL-PG-P205	Pharmacology Practical II	12	6	12	150
MPL-PG-C206	Seminar/Assignment	7	4	7	100
1/11 Z 1 G G 2 00	Total	35	26	35	650
M Pharm Speci	alisation for Pharmacognosy (MPG)	33	20	33	030
Code	Course	Credit Hours	Credit Points	Hrs./wk	Marks
Semester I					
MPG-PG-T101	Modern Pharmaceutical Analytical Techniques	4	4	4	100
MPG-PG-T102	Advanced Pharmacognosy-1	4	4	4	100
MPG-PG-T103	Phytochemistry	4	4	4	100
MPG-PG-T104	Industrial Pharmacognostical Technology				
MPG-PG-P105	Pharmacognosy Practical I	12	6	12	150
MPG-PG-C106	Seminar/Assignment	7	4	7	100
Total		35	26	35	650
Semester II					
MPG-PG-T201	Medicinal Plant Biotechnology	4	4	4	100
MPG-PG-T202	Advanced Pharmacognosy-II	4	4	4	100
MPG-PG-T203	Indian system of medicine	4	4	4	100
MPG-PG-T204	Herbal cosmetics	4	4	4	100
MPG-PG-P205	Pharmacognosy Practical II	12	6	12	150
MPG-PG-C206	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650
M. Pharm. Speci	alisation for Pharmaceutical Analysis & Quality	Assurance (MAQ)		
Code	Course	Credit Hours	Credit Points	Hrs./wk	Marks
Semester I					
MAQ-PG-T101	Modern Pharmaceutical Analytical Techniques	4	4	4	100
MAQ-PG-T102	Advanced Pharmaceutical Analysis	4	4	4	100
MAQ-PG-T103	Quality Management System	4	4	4	100
MAQ-PG-T104	Pharmaceutical Validation	4	4	4	100
MAQ-PG-P105	Pharmaceutical Analysis and Quality Assurance	12	6	12	150
MAQ-PG-C106	Seminar/Assignment	7	4	7	100
Total		35	26	35	650
Semester II	,	1	1	1	
MAQ-PG-T201	Advanced Instrumental Analysis	4	4	4	100
MAQ-PG-T202	Quality Control and Quality Assurance	4	4	4	100
MAQ-PG-T203	Pharmaceutical Manufacturing Technology	4	4	4	100
MAQ-PG-T204	Audits & Regulatory Compliance	4	4	4	100
MAQ-PG-P205	Pharmaceutical Analysis and Quality Assurance	12	6	12	150
MAQ-PG-C206	Seminar/Assignment	7	4	7	100

	Total	35	26	35	650
M. Pharm. III Se	emester (Common for All Specializations)	•			
Code	Course	Credit Hours	Credit Points		
PHA-PG-C301	Research Methodology and Biostatistics	4	4		
PHA-PG-J302	Journal club	1	1		
PHA-PG-D303	Discussion / Presentation (Proposal Presentation)	2	2		
PHA-PG-R304	Research Work	28	14		
Total		35	21		
M. Pharm, IV So	emester (Common for All Specializations)				
Code	Course	Credit Hours	Credit Points		
PHA-PG-J401	Journal Club	1	1		
PHA-PG-R402	Research Work	31	16		
PHA-PG-D403	Discussion/Final Presentation	3	3		
Total		35	20	·	

The specializations in M.Pharm program is given in Table 1.

Table - 1: List of M.Pharm. Specializations and their Code

S. No.	Specialization	Code
1	Pharmaceutics	MPH
2	Pharmaceutical Chemistry	MPC
3	Pharmacology	MPL
4	Pharmacognosy	MPG
5	Pharmaceutiocal Analysis & Quality Assurance*	MAQ

The course of study for M.Pharm specializations shall include Semester wise Theory & Practical as given in Table 2 to 16. The number of hours to be devoted to each theory and practical course in any semester shall not be less than that shown in Table 2 to 16.

SIKKIM UNIVERSITY

Scheme & Syllabus for the Master of Pharmacy (M. Pharm) Course

[Framed under The Master of Pharmacy (M. Pharm) Course Regulations, 2014]

(Based on Notification in the Gazette of India No-362, dated 11.12.2014)

Pharmacy Council of India
New Delhi

Course of study

The specializations in M.Pharm program is given in Table 1.

Table - 1: List of M.Pharm. Specializations and their Code

S. No.	Specialization	Code
1.	Pharmaceutics	MPH
2	Pharmaceutical Chemistry	MPC
3.	Pharmacology	MPL
4.	Pharmacognosy	MPG
5.	Pharmaceutiocal Analysis & Quality Assurance*	MAQ

The course of study for M.Pharm specializations shall include Semester wise Theory & Practical as given in Table -2 to 16. The number of hours to be devoted to each theory and practical course in any semester shall not be less than that shown in Table -2 to 16.

Table - 2: Course of study for M. Pharm. (Pharmaceutics)

Course Code	Course	Credit Hours	Credit Points	Hrs./w k	Marks
	Seme	ester I			
MPH101T	Modern Pharmaceutical Analytical Techniques	4	4	4	100
MPH102T	Drug Delivery System	4	4	4	100
MPH103T	Modern Pharmaceutics	4	4	4	100
MPH104T	Regulatory Affair	4	4	4	100
MPH105P	Pharmaceutics Practical I	12	6	12	150
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650
	Seme	ster II			
MPH201T	Molecular Pharmaceutics (Nano Tech and Targeted DDS)	4	4	4	100
MPH202T	Advanced Biopharmaceutics & Pharmacokinetics	4	4	4	100
МРН203Т	Computer Aided Drug Delivery System	4	4	4	100
MPH204T	Cosmetic and Cosmeceuticals	4	4	4	100
MPH205P	Pharmaceutics Practical II	12	6	12	150
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650

Table - 3: Course of study for M. Pharm. (Pharmaceutical Chemistry)

Credit Credit Hrs./w						
Course Code	Course			Hrs./w	Marks	
		Hours	Points	k		
	Seme	ester I				
MPC101T	Modern Pharmaceutical					
WII CIUIT	Analytical Techniques	4	4	4	100	
MPC102T	Advanced Organic					
WII C1021	Chemistry -I	4	4	4	100	
MPC103T	Advanced Medicinal					
	chemistry	4	4	4	100	
MPC104T	Chemistry of Natural					
	Products	4	4	4	100	
MPC105P	Pharmaceutical					
	Chemistry Practical I	12	6	12	150	
-	Seminar/Assignment	7	4	7	100	
	Total	35	26	35	650	
	Seme	ster II				
MPC201T	Advanced Spectral					
WII C2011	Analysis	4	4	4	100	
MPC202T	Advanced Organic					
WII C2021	Chemistry -II	4	4	4	100	
MPC203T	Computer Aided Drug					
	Design	4	4	4	100	
MPC204T	Pharmaceutical Process				100	
	Chemistry	4	4	4	100	
MPC205P	Pharmaceutical		_		150	
02001	Chemistry Practical II	12	6	12	150	
-	Seminar/Assignment	7	4	7	100	
	Total	35	26	35	650	

Table – 4: Course of study for (Pharmacology)

Course Code	Course	Credit Hours	Credit Points	Hrs./wk	Marks
	Seme	ster I			
MPL 101T	Modern Pharmaceutical Analytical Techniques	4	4	4	100
MPL 102T	Advanced Pharmacology-I	4	4	4	100
MPL 103T	Pharmacological and Toxicological Screening Methods-I	4	4	4	100
MPL 104T	Cellular and Molecular Pharmacology	4	4	4	100
MPL 105P	Pharmacology Practical I	12	6	12	150
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650
	Semes	ster II			
MPL 201T	Advanced Pharmacology II	4	4	4	100
MPL 202T	Pharmacological and Toxicological Screening Methods-II	4	4	4	100
MPL 203T	Principles of Drug Discovery	4	4	4	100
MPL 204T	Clinical Research And Pharmacovigilance	4	4	4	100
MPL 205P	Pharmacology Practical II	12	6	12	150
_	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650

Table - 5: Course of study for M. Pharm. (Pharmacognosy)

Course Code	Course	Credit Hours	Credit Points	Hrs./wk	Marks
	Semes	ter I			
MPG101T	Modern Pharmaceutical Analytical Techniques	4	4	4	100
MPG102T	Advanced Pharmacognosy-1	4	4	4	100
MPG103T	Phytochemistry	4	4	4	100
MPG104T	Industrial Pharmacognostical Technology	4	4	4	100
MPG105P	Pharmacognosy Practical I	12	6	12	150
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650
	Semes	ter II			
MPG201T	Medicinal Plant Biotechnology	4	4	4	100
MPG202T	Advanced Pharmacognosy-II	4	4	4	100
MPG203T	Indian system of medicine	4	4	4	100
MPG204T	Herbal cosmetics	4	4	4	100
MPG205P	Pharmacognosy Practical II	12	6	12	150
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650

Table - 6: Course of study for M. Pharm. (Pharmaceutical Analysis & Quality Assurance)

Course Code	Course	Credit Hours	Credit Points	Hrs./wk	Marks
	Semes	ter I			
MAQ101T	Modern Pharmaceutical Analytical Techniques	4	4	4	100
MAQ102T	Advanced Pharmaceutical Analysis	4	4	4	100
MAQ103T	Quality Management System	4	4	4	100
MAO104T	Pharmaceutical Validation	4	4	4	100
MAQ105P	Pharmaceutical Analysis and Quality Assurance Practical I	12	6	12	150
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650
	Semes	ter II			
MAQ201T	Advanced Instrumental Analysis	4	4	4	100
MAQ202T	Quality Control and Quality Assurance	4	4	4	100
MAQ203T	Pharmaceutical Manufacturing Technology	4	4	4	100
MAQ204T	Audits & Regulatory Compliance	4	4	4	100
MAQ205P	Pharmaceutical Analysis and Quality Assurance Practical II	12	6	12	150
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650

Table - 7: Course of study for M. Pharm. III Semester (Common for All Specializations)

(
Course Code	Course	Credit Hours	Credit Points			
		пошѕ	Politis			
MRM 301T	Research Methodology and Biostatistics	4	4			
-	Journal club	1	1			
	Discussion / Presentation					
_	(Proposal Presentation)	2	2			
-	Research Work	28	14			
	Total	35	21			

Table - 8: Course of study for M. Pharm. IV Semester (Common for All Specializations)

Course Code	Course	Credit Hours	Credit Points
-	Journal Club	1	1
-	Research Work	31	16
-	Discussion/Final Presentation	3	3
	Total	35	20

Table – 9: Semester wise credits distribution

Semester	Credit Points
I	26
II	26
III	21
IV	20
Co-curricular Activities (Attending Conference, Scientific Presentations and Other Scholarly Activities)	Minimum=02 Maximum=07*
Total Credit Points	Minimum=95 Maximum=100*

^{*}Credit Points for Co-curricular Activities

Table -10: Guidelines for Awarding Credit Points for Co-curricular Activities

Name of the Activity	Maximum Credit Points Eligible / Activity
Participation in National Level Seminar/Conference/Workshop/Symposium/ Training Programs (related to the specialization of the student)	01
Participation in international Level Seminar/Conference/Workshop/Symposium/ Training Programs (related to the specialization of the student)	02
Academic Award/Research Award from State Level/National Agencies	01
Academic Award/Research Award from International Agencies	02
Research / Review Publication in National Journals (Indexed in Scopus / Web of Science)	01
Research / Review Publication in International Journals (Indexed in Scopus / Web of Science)	02

Note: International Conference: Held Outside India

Tables - 11 : Schemes for internal assessments and end semester
(Pharmaceutics- MPH)

Course		Internal Assessment						Tota
Code	Course	Continu ous Mode		sional ams Durati on	Tot al	Mar ks	Durati on	Mar ks
		SE	MESTE	R I				
MPH 101T	Modern Pharmaceuti cal Analytical Techniques	10	15	1 Hr	25	75	3 Hrs	100
MPH 102T	Drug Delivery System	10	15	1 Hr	25	75	3 Hrs	100
MPH 103T	Modern Pharmaceuti cs	10	15	1 Hr	25	75	3 Hrs	100
MPH 104T	Regulatory Affair	10	15	1 Hr	25	75	3 Hrs	100
MPH 105P	Pharmaceuti cs Practical I	20	30	6 Hrs	50	100	6 Hrs	150
-	Seminar /Assignment	-	-	-	-	-	-	100
			otal	D. 11				650
	<u> </u>	SE	MESTE	R II				
МРН 201Т	Molecular Pharmaceuti cs(Nano Tech and Targeted DDS)	10	15	1 Hr	25	75	3 Hrs	100
MPH 202T	Advanced Biopharmac eutics & Pharmacokin etics	10	15	1 Hr	25	75	3 Hrs	100
MPH 203T	Computer Aided Drug Delivery System	10	15	1 Hr	25	75	3 Hrs	100
MPH	Cosmetic	10	15	1 Hr	25	75	3 Hrs	100

204T	and Cosmeceutic als							
MPH 205P	Pharmaceuti cs Practical II	20	30	6 Hrs	50	100	6 Hrs	150
-	Seminar /Assignment	-	-	-	-	-	-	100
Total						650		

Table 12: (Pharmaceutical Chemistry-MPC)

				ssessmen		En Seme Exa	ster	
Course Code	Course	Cont inuo		sional ams	Tot	Mar	Du	Total Marks
		us Mod e	Mar ks	Durati on	al	ks	rati on	
	ı		SEMEST	ER I				
MPC101T	Modern Pharmaceutic al Analytical Techniques	10	15	1 Hr	25	75	3 Hrs	100
MPC102T	Advanced Organic Chemistry -I	10	15	1 Hr	25	75	3 Hrs	100
MPC103T	Advanced Medicinal chemistry	10	15	1 Hr	25	75	3 Hrs	100
MPC104T	Chemistry of Natural Products	10	15	1 Hr	25	75	3 Hrs	100
MPC105P	Pharmaceutic al Chemistry Practical I	20	30	6 Hrs	50	100	6 Hrs	150
-	Seminar /Assignment	-	-	-	-	-	-	100
			otal					650
			SEMEST	ER IÍ	ı			
MPC201T	Advanced Spectral Analysis	10	15	1 Hr	25	75	3 Hrs	100
			15	1 Hr	25	75		
MPC203T	Computer Aided Drug Design	10	15	1 Hr	25	75	3 Hrs	100
	Pharmaceutic		15	1 Hr	25	75		100
MPC205P	гнаннассияс	20	30	6 Hrs	50	100	J	150

al Chemi Practical II	stry					Hrs	
Seminar							
/Assignmer	it -	-	-	-	-	-	100
Total							650

Tables – 13: Schemes for internal assessments and end semester examinations (Pharmacology-MPL)

		Inte	ernal As	sessment	t		emester ams	Tot	
Course Code	Course	Conti nuous Mode		sional ams Durati	Tot al	Mar ks	Durati on	al Mar ks	
		Mode	ks	on					
		S	EMESTE	ER I					
MPL10 1T	Modern Pharmaceutical Analytical Techniques	10	15	1 Hr	25	75	3 Hrs	100	
MPL10 2T	Advanced Pharmacology-I	10	15	1 Hr	25	75	3 Hrs	100	
MPL10 3T	Pharmacological and Toxicological Screening Methods-l	10	15	1 Hr	25	75	3 Hrs	100	
MPL10 4T	Cellular and Molecular Pharmacology Pharmacology	10	15	1 Hr	25	75	3 Hrs	100	
MPL10 5P	Pharmacology Practical - I	20	30	6 Hrs	50	100	6 Hrs	150	
-	Seminar /Assignment	-	-	-	-	-	-	100	
		T	otal					650	
		SI	EMESTE	R II					
MPL20 1T	Advanced Pharmacology II	10	15	1 Hr	25	75	3 Hrs	100	
MPL20 2T	Pharmacological and Toxicological Screening Methods-II	10	15	1 Hr	25	75	3 Hrs	100	
MPL20 3T	Principles of Drug Discovery	10	15	1 Hr	25	75	3 Hrs	100	
MPL20 4T	Clinical research and pharmacovigilanc e	10	15	1 Hr	25	75	3 Hrs	100	
MPL20 5P	Pharmacology Practical-II	20	30	6 Hrs	50	100	6 Hrs	150	
-	Seminar /Assignment	-	-	-	-	-	-	100	
		T	otal					650	

Tables – 14: Schemes for internal assessments and end semester examinations (Pharmacognosy-MPG)

		(i iiaii	nacogn	osy wii G	,	- 1 ~		
		Inte	ernal As	sessment		emester ams	Tota	
Course Code	Course	Contin uous Mode		sional ams Durati on	Tot al	Mar ks	Durati on	l Mar ks
	1	S	SEMEST					
MPG10 1T	Modern Pharmaceutica I Analytical Techniques	10	15	1 Hr	25	75	3 Hrs	100
MPG10 2T	Advanced Pharmacognos v-1	10	15	1 Hr	25	75	3 Hrs	100
MPG10 3T	Phytochemistr v	10	15	1 Hr	25	75	3 Hrs	100
MPG10 4T	Industrial Pharmacognos tical Technology	10	15	1 Hr	25	75	3 Hrs	100
MPG10 5P	Pharmacognos v Practical I	20	30	6 Hrs	50	100	6 Hrs	150
-	Seminar /Assignment	-	-	-	-	-	-	100
		Т	Γotal					650
		S	EMEST	ER II				
MPG20 1T	Medicinal Plant Biotechnology	10	15	1 Hr	25	75	3 Hrs	100
MPG20 2T	Advanced Pharmacognos v-II	10	15	1 Hr	25	75	3 Hrs	100
MPG20 3T	Indian system of medicine	10	15	1 Hr	25	75	3 Hrs	100
MPG20 4T	Herbal cosmetics	10	15	1 Hr	25	75	3 Hrs	100
MPG20 5P	Pharmacognos v Practical II	20	30	6 Hrs	50	100	6 Hrs	150
-	Seminar Assignment	-	-	-	-	-	-	100
Total							650	

Table 15- Schemes for internal assessments and end semester examinations (Pharmaceutical Analysis & Quality Assurance-MAQ)

Cours		Ir	nternal A	Assessme	nt	End Semester Exams		Total
e Code	Course	Cont nuou Mod	s Ma		T ot al	Mar ks	Dura tion	Marks
		5	SEMEST	ER I				
MAQ1 01T	Modern Pharmaceutical Analytical Techniques	10	15	1 Hr	25	75	3 Hrs	100
MAQ1 02T	Advanced Pharmaceutical Analysis	10	15	1 Hr	25	75	3 Hrs	100
MAQ1 03T	Quality Management System	10	15	1 Hr	25	75	3 Hrs	100
MAQ1 04T	Pharmaceutical Validation	10	15	1 Hr	25	75	3 Hrs	100
MAQ1 05 P	Pharmaceutical Analysis & Quality Assurance Practical I	20	30	6 Hrs	50	100	6 Hrs	150
-	Seminar /Assignment	-	-	-	-	-	-	100
			otal	ED II				650
MAQ2 01T	Advanced Instrumental Analysis	10	SEMEST 15	1 Hr	25	75	3 Hrs	100
MAQ2 02T	Quality Control and Ouality Assurance	10	15	1 Hr	25	75	3 Hrs	100
MAQ2 03T	Pharmaceutical Manufacturing Technology	10	15	1 Hr	25	75	3 Hrs	100
MAQ2 04T	Audits and Regulatory Compliance	10	15	1 Hr	25	75	3 Hrs	100
MAQ2 05 P	Pharmaceutical Analysis & Quality Assurance Practical II	20	30	6 Hrs	50	100	6 Hrs	150
-	Seminar /Assignment	- T	- otal	-	-	-	-	100 650

Table 16- Schemes for internal assessments and end semester examinations (Semester III&IV)

		Int		ssessment			emester	Tota
Course Code	Course	Conti nuou		sional ams	Tot	Mark	Durati	l Mark s
		s Mode	Mark s	Durati on	al	s	on	3
			SEMEST	ER III				
MRM30 1T	Research Methodology and Biostatistics*	10	15	1 Hr	25	75	3 Hrs	100
-	Journal club	-	-	-	25	-	-	25
-	Discussion / Presentation (Proposal Presentation)	-	-	-	50	-	-	50
-	Research work*	-	-	-	-	350	1 Hr	350
			Total					525
			SEMEST	ER IV				
-	Journal club	-	-	-	25	-	-	25
-	Discussion Presentation (Proposal Presentation)	-	-	-	75	-	-	75
-	Research work and Colloquium	-	-	-	-	400	1 Hr	400
Total								500

^{*}Non University Examination

Internal assessment: Continuous mode

The marks allocated for Continuous mode of Internal Assessment shall be awarded as per the scheme given below.

Table - 17: Scheme for awarding internal assessment: Continuous mode

Theory						
Criteria	Maximum Marks					
Attendance (Refer Table – 18)	8					
Student – Teacher interaction	2					
Total	10					
Practical						
Attendance (Refer Table – 28	10					
Based on Practical Records, Regular viva voce, etc.	10					
Total	20					

Table - 18: Guidelines for the allotment of marks for attendance

Percentage of Attendance	Theory	Practical							
95 – 100	8	10							
90 – 94	6	7.5							
85 – 89	4	5							
80 – 84	2	2.5							
Less than 80	0	0							

Table - 19: Tentative schedule of end semester examinations

Semester	For Regular Candidates	For Failed Candidates
I and III	November / December	May / June
II and IV	May / June	November / December

Table -20: Letter grades and grade points equivalent to Percentage of marks and performances

Percentage of Marks Obtained	Letter Grade	Grade Point	Performance
90.00 - 100	0	10	Outstanding
80.00 - 89.99	Α	9	Excellent
70.00 - 79.99	В	8	Good
60.00 - 69.99	С	7	Fair
50.00 - 59.99	D	6	Average
Less than 50	F	0	Fail
Absent	AB	0	Fail

The Semester grade point average (SGPA)

The performance of a student in a semester is indicated by a number called 'Semester Grade Point Average' (SGPA). The SGPA is the weighted average of the grade points obtained in all the courses by the student during the semester. For example, if a student takes five courses (Theory/Practical) in a semester with credits C1, C2, C3 and C4 and the student's grade points in these courses are G1, G2, G3 and G4, respectively, and then students' SGPA is equal to:

$$SGPA = C_1G_1 + C_2G_2 + C_3G_3 + C_4G_4$$

$$C_1 + C_2 + C_3 + C_4$$

The SGPA is calculated to two decimal points. It should be noted that, the SGPA for any semester shall take into consideration the F and ABS grade awarded in that semester. For example if a learner has a F or ABS grade in course 4, the SGPA shall then be computed as:

$$SGPA = \frac{C_1G_1 + C_2G_2 + C_3G_3 + C_4* ZERO}{C_1 + C_2 + C_3 + C_4}$$

19. Cumulative Grade Point Average (CGPA)

The CGPA is calculated with the SGPA of all the IV semesters to two decimal points and is indicated in final grade report card/final transcript showing the grades of all IV semesters and their courses. The CGPA shall reflect the failed statusin case of F grade(s), till the course(s) is/are passed. When the course(s) is/are passedby obtaining a pass grade on subsequent examination(s) the CGPA

The CGPA is calculated as:

$$CGPA = \frac{C_1S_1 + C_2S_2 + C_3S_3 + C_4S_4}{C_1 + C_2 + C_3 + C_4}$$

where C_1 , C_2 , C_3 ,.... is the total number of credits for semester I,II,III,.... and S_1,S_2 , S_3 ,...is the SGPA of semester I,II,III,.....

PHARMACEUTICS (MPH)

MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES (MPH 101T)

Scope

This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are NMR, Mass spectrometer, IR, HPLC, GC etc.

01	
()hi	ectives
\circ	CCHVCS

After completion of course student is able to know,

- Chemicals and Excipients
- The analysis of various drugs in single and combination dosage forms
- ☐ Theoretical and practical skills of the instruments

THEORY 60 HOURS

- a. UV-Visible spectroscopy: Introduction, Theory, Laws, 11
 Instrumentation associated with UV-Visible spectroscopy, Hrs
 Choice of solvents and solvent effect and Applications of UV Visible spectroscopy.
 - b. IR spectroscopy: Theory, Modes of Molecular vibrations, Sample handling, Instrumentation of Dispersive and Fourier Transform IR Spectrometer, Factors affecting vibrational frequencies and Applications of IR spectroscopy
 - c. Spectroflourimetry: Theory of Fluorescence, Factors affecting fluorescence, Quenchers, Instrumentation and Applications of fluorescence spectrophotometer.
 - d. Flame emission spectroscopy and Atomic absorption spectroscopy: Principle, Instrumentation, Interferences and Applications.

11

Hrs

NMR spectroscopy: Quantum numbers and their role in NMR, Principle, Instrumentation, Solvent requirement in NMR, Relaxation process, NMR signals in various compounds, Chemical shift, Factors influencing chemical shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR and 13C NMR. Applications of NMR spectroscopy.

- 3 Mass Spectroscopy: Principle, Theory, Instrumentation of Mass 11 Spectroscopy, Different types of ionization like electron impact, Hrs chemical, field, FAB and MALDI, APCI, ESI, APPI Analyzers of Quadrupole and Time of Flight, Mass fragmentation and its rules, Meta stable ions, Isotopic peaks and Applications of Mass spectroscopy
- 4 Chromatography: Principle, apparatus, instrumentation, 11 chromatographic parameters, factors affecting resolution and Hrs applications of the following:
 - a) Paper chromatography b) Thin Layer chromatography
 - c) Ion exchange chromatography d) Column chromatography
 - e) Gas chromatography f) High Performance Liquid chromatography
 - g) Affinity chromatography
- 5 a. Electrophoresis: Principle, Instrumentation, Working 11 conditions, factors affecting separation and applications of the Hrs following:
 - a) Paper electrophoresis b) Gel electrophoresis c) Capillary electrophoresis d) Zone electrophoresis e) Moving boundary electrophoresis f) Iso electric focusing
 - b. X ray Crystallography: Production of X rays, Different X ray diffraction methods, Bragg's law, Rotating crystal technique, X ray powder technique, Types of crystals and applications of X-ray diffraction.
- 6 Immunological assays : RIA (Radio immuno assay), ELISA, Bioluminescence assays.

REFERENCES

- 1. Spectrometric Identification of Organic compounds Robert M Silverstein, Sixth edition, John Wiley & Sons, 2004.
- 2. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman, 5th edition, Eastern press, Bangalore, 1998.
- 3. Instrumental methods of analysis Willards, 7th edition, CBS publishers.
- 4. Practical Pharmaceutical Chemistry Beckett and Stenlake, Vol II, 4th edition, CBS Publishers, New Delhi, 1997.
- 5. Organic Spectroscopy William Kemp, 3rd edition, ELBS, 1991.
- 6. Quantitative Analysis of Drugs in Pharmaceutical formulation P D Sethi, 3rd Edition, CBS Publishers, New Delhi, 1997.
- 7. Pharmaceutical Analysis- Modern methods Part B J W Munson, Volume 11. Marcel Dekker Series

DRUG DELIVERY SYSTEMS (MPH 102T)

SCOPE

This course is designed to impart knowledge on the area of advances in novel drug delivery systems.

_	delivery systems. JECTIVES
Upoi	 completion of the course, student shall be able to understand The various approaches for development of novel drug delivery systems. The criteria for selection of drugs and polymers for the development of delivering system The formulation and evaluation of Novel drug delivery systems
TH	EORY 60 Hrs
1.	Sustained Release(SR) and Controlled Release (CR) 10 formulations: Introduction & basic concepts, advantages/ Hrs disadvantages, factors influencing, Physicochemical & biological approaches for SR/CR formulation, Mechanism of Drug Delivery from SR/CR formulation. Polymers: introduction, definition, classification, properties and application Dosage Forms for Personalized Medicine: Introduction, Definition, Pharmacogenetics, Categories of Patients for Personalized Medicines: Customized drug delivery systems, Bioelectronic Medicines, 3D printing of pharmaceuticals, Telepharmacy.
2	Rate Controlled Drug Delivery Systems: Principles & 10 Fundamentals, Types, Activation; Modulated Drug Delivery Hrs Systems; Mechanically activated, pH activated, Enzyme activated, and Osmotic activated Drug Delivery Systems Feedback regulated Drug Delivery Systems; Principles & Fundamentals.
3	Gastro-Retentive Drug Delivery Systems: Principle, concepts 10 advantages and disadvantages, Modulation of GI transit time Hrs approaches to extend GI transit. Buccal Drug Delivery Systems: Principle of muco adhesion, advantages and disadvantages, Mechanism of drug permeation, Methods of

Occular Drug Delivery Systems: Barriers of drug permeation,

06

Hrs

formulation and its evaluations.

Methods to overcome barriers.

4

- Transdermal Drug Delivery Systems: Structure of skin and 10 barriers, Penetration enhancers, Transdermal Drug Delivery Hrs Systems, Formulation and evaluation.
- 6 Protein and Peptide Delivery: Barriers for protein delivery. 08 Formulation and Evaluation of delivery systems of proteins and Hrs other macromolecules.
- 7 Vaccine delivery systems: Vaccines, uptake of antigens, single shot vaccines, mucosal and transdermal delivery of vaccines. Hrs

REFERENCES

- 1. Y W. Chien, Novel Drug Delivery Systems, 2nd edition, revised and expanded, Marcel Dekker, Inc., New York, 1992.
- 2. Robinson, J. R., Lee V. H. L, Controlled Drug Delivery Systems, Marcel Dekker, Inc., New York, 1992.
- 3. Encyclopedia of controlled delivery, Editor- Edith Mathiowitz, Published by WileyInterscience Publication, John Wiley and Sons, Inc, New York! Chichester/Weinheim
- 4. N.K. Jain, Controlled and Novel Drug Delivery, CBS Publishers & Distributors, New Delhi, First edition 1997 (reprint in 2001).
- 5. S.P.Vyas and R.K.Khar, Controlled Drug Delivery concepts and advances, Vallabh Prakashan, New Delhi, First edition 2002

JOURNALS

- 1. Indian Journal of Pharmaceutical Sciences (IPA)
- 2. Indian drugs (IDMA)
- 3. Journal of controlled release (Elsevier Sciences) desirable
- 4. Drug Development and Industrial Pharmacy (Marcel & Decker) desirable

MODERN PHARMACEUTICS (MPH 103T)

Scope

Course designed to impart advanced knowledge and skills required to learn various aspects and concepts at pharmaceutical industries

Objectives	
Upon completion of the course, student shall be able to understand The elements of preformulation studies. The Active Pharmaceutical Ingredients and Generic drug	Product
development Industrial Management and GMP Considerations. Optimization Techniques & Pilot Plant Scale Up Techniques Stability Testing, sterilization process & packaging of dosage for THEORY	ms. 50 HRS
 a. Preformation Concepts – Drug Excipient interactions different methods, kinetics of stability, Stability testing. Theories of dispersion and pharmaceutical Dispersion (Emulsion and Suspension, SMEDDS) preparation and stability Large and smal volume parental – physiological and formulation consideration Manufacturing and evaluation. 	Hrs
b. Optimization techniques in Pharmaceutical Formulation Concept and parameters of optimization, Optimization techniques in pharmaceutical formulation and processing. Statistical design Response surface method, Contour designs, Factorial designs and application in formulation	Hrs
Validation: Introduction to Pharmaceutical Validation, Scope & merits of Validation, Validation and calibration of Master plan, ICH & WHO guidelines for calibration and validation of equipments, Validation of specific dosage form, Types of validation. Government regulation, Manufacturing Process Model, URS, DQ, IQ, OQ & P.Q. of facilities.	10 Hrs
3 cGMP & Industrial Management: Objectives and policies of current good manufacturing practices, layout of buildings, services, equipments and their maintenance Production management: Production organization, , materials management, handling and transportation, inventory management and control, production and planning control, Sales forecasting, budget and cost control, industrial and personal relationship. Concept of Total Quality Management.	10 Hrs

- 4 Compression and compaction: Physics of tablet compression, 10 compression, consolidation, effect of friction, distribution of Hrs forces, compaction profiles. Solubility.
- 5 Study of consolidation parameters; Diffusion parameters, 10 Dissolution parameters and Pharmacokinetic parameters, Heckel Hrs plots, Similarity factors f2 and f1, Higuchi and Peppas plot, Linearity Concept of significance, Standard deviation, Chi square test, students T-test, ANOVA test.

REFERENCES

- 1. Theory and Practice of Industrial Pharmacy By Lachmann and Libermann
- 2. Pharmaceutical dosage forms: Tablets Vol. 1-3 by Leon Lachmann.
- 3. Pharmaceutical Dosage forms: Disperse systems, Vol, 1-2; By Leon Lachmann.
- 4. Pharmaceutical Dosage forms: Parenteral medications Vol. 1-2; By Leon Lachmann.
- 5. Modern Pharmaceutics; By Gillbert and S. Banker.
- 6. Remington's Pharmaceutical Sciences.
- Advances in Pharmaceutical Sciences Vol. 1-5; By H.S. Bean & A.H. Beckett.
- 8. Physical Pharmacy; By Alfred martin
- 9. Bentley's Textbook of Pharmaceutics by Rawlins.
- 10. Good manufacturing practices for Pharmaceuticals: A plan for total quality control, Second edition; By Sidney H. Willig.
- 11. Quality Assurance Guide; By Organization of Pharmaceutical producers of India.
- 12.Drug formulation manual; By D.P.S. Kohli and D.H.Shah. Eastern publishers, New Delhi.
- 13. How to practice GMPs; By P.P.Sharma. Vandhana Publications, Agra.
- 14. Pharmaceutical Process Validation; By Fra. R. Berry and Robert A. Nash.
- 15. Pharmaceutical Preformulations; By J.J. Wells.
- 16. Applied production and operations management; By Evans, Anderson, Sweeney and Williams.
- 17. Encyclopaedia of Pharmaceutical technology, Vol I III.

REGULATORY AFFAIRS (MPH 104T)

Scope	2
-------	---

b.

Scope
Course designed to impart advanced knowledge and skills required to learn the concept of generic drug and their development, various regulatory filings in different countries, different phases of clinical trials and submitting regulatory documents: filing process of IND, NDA and ANDA To know the approval process of
☐ To know the chemistry, manufacturing controls and their regulatory
importance□ To learn the documentation requirements for□ To learn the importance and
Objectives:
Upon completion of the course, it is expected that the students will be able to understand
 The Concepts of innovator and generic drugs, drug development process
 The Regulatory guidance's and guidelines for filing and approval process
 Preparation of Dossiers and their submission to regulatory agencies in different countries
 Post approval regulatory requirements for actives and drug products Submission of global documents in CTD/ eCTD formats
 Clinical trials requirements for approvals for conducting clinical trials Pharmacovigilence and process of monitoring in clinical trials.
THEORY 60 Hrs
1. a. Documentation in Pharmaceutical industry: Master formula 12 record, DMF (Drug Master File), distribution records. Generic Hrs drugs product development Introduction, Hatch-Waxman act and amendments, CFR (CODE OF FEDERAL REGULATION), drug product performance, in-vitro, ANDA regulatory approval process, NDA approval process, BE and drug product assessment, in -vivo, scale up process approval changes, post marketing surveillance, outsourcing BA and BE to CRO

Regulatory requirement for product approval: API,

biologics, novel, therapies obtaining NDA, ANDA for generic drugs ways and means of US registration for foreign drugs

- 2 CMC, post approval regulatory affairs. Regulation for combination 12 products and medical devices.CTD and ECTD format, industry Hrs and FDA liaison. ICH Guidelines of ICH-Q, S E, M. Regulatory requirements of EU, MHRA, TGA and ROW countries.
- 3 Non clinical drug development: Global submission of IND, 12 NDA, ANDA. Investigation of medicinal products dossier, dossier Hrs (IMPD) and investigator brochure (IB).
- 4 Clinical trials: Developing clinical trial protocols. Institutional review board/ independent ethics committee Formulation and Hrs working procedures informed Consent process and procedures.

 HIPAA- new, requirement to clinical study process, pharmacovigilance safety monitoring in clinical trials.

REFERENCES

- 1. Generic Drug Product Development, Solid Oral Dosage forms, Leon Shargel and IsaderKaufer, Marcel Dekker series, Vol.143
- 2. The Pharmaceutical Regulatory Process, Second Edition Edited by Ira R. Berry and Robert P.Martin, Drugs and the Pharmaceutical Sciences, Vol. 185, Informa Health care Publishers.
- 3. New Drug Approval Process: Accelerating Global Registrations By Richard A Guarino, MD,5th edition, Drugs and the Pharmaceutical Sciences, Vol. 190.
- 4. Guidebook for drug regulatory submissions / Sandy Weinberg. By John Wiley & Sons.Inc.
- 5. FDA regulatory affairs: a guide for prescription drugs, medical devices, and biologics/edited By Douglas J. Pisano, David Mantus.
- 6. Clinical Trials and Human Research: A Practical Guide to Regulatory Compliance By Fay A.Rozovsky and Rodney K. Adams
- 7. www.ich.org/
- 8. www.fda.gov/
- 9. europa.eu/index_en.htm
- 10. https://www.tga.gov.au/tga-basics

PHARMACEUTICS PRACTICALS - I (MPH 105P)

- 1. Analysis of pharmacopoeial compounds and their formulations by UV Vis spectrophotometer
- Simultaneous estimation of multi component containing formulations by UV spectrophotometry
- 3. Experiments based on HPLC
- 4. Experiments based on Gas Chromatography
- 5. Estimation of riboflavin/quinine sulphate by fluorimetry
- 6. Estimation of sodium/potassium by flame photometry
- 7. To perform In-vitro dissolution profile of CR/SR marketed formulation
- 8. Formulation and evaluation of sustained release matrix tablets
- 9. Formulation and evaluation osmotically controlled DDS
- 10. Preparation and evaluation of Floating DDS- hydro dynamically balanced DDS
- 11. Formulation and evaluation of Muco adhesive tablets.
- 12. Formulation and evaluation of trans dermal patches.
- 13. To carry out preformulation studies of tablets.
- 14. To study the effect of compressional force on tablets disintegration time.
- 15. To study Micromeritic properties of powders and granulation.
- 16. To study the effect of particle size on dissolution of a tablet.
- 17. To study the effect of binders on dissolution of a tablet.
- 18. To plot Heckal plot, Higuchi and peppas plot and determine similarity factors.

MOLECULAR PHARMACEUTICS (NANO TECHNOLOGY & TARGETED DDS) (NTDS) (MPH 201T)

Scope

This course is designed to impart knowledge on the area of advances in novel drug delivery systems.

Objecti	ves
Upon cor	npletion of the course student shall be able to understand
	The various approaches for development of novel drug delivery
	systems.
	The criteria for selection of drugs and polymers for the development of
	NTDS
	The formulation and evaluation of novel drug delivery systems.

THEORY 60 Hrs

- Targeted Drug Delivery Systems: Concepts, Events and 12 biological process involved in drug targeting. Tumor targeting and Hrs Brain specific delivery.
- Targeting Methods: introduction preparation and evaluation.

 Nano Particles & Liposomes: Types, preparation and evaluation.

 Hrs
- Micro Capsules / Micro Spheres: Types, preparation and 12 evaluation, Monoclonal Antibodies; preparation and application, Hrs preparation and application of Niosomes, Aquasomes, Phytosomes, Electrosomes.
- 4 Pulmonary Drug Delivery Systems : Aerosols, propellents, 12 Containers Types, preparation and evaluation, Intra Nasal Route Hrs Delivery systems; Types, preparation and evaluation.
- Nucleic acid based therapeutic delivery system: Gene therapy, 12 introduction (ex-vivo & in-vivo gene therapy). Potential target Hrs diseases for gene therapy (inherited disorder and cancer). Gene expression systems (viral and nonviral gene transfer). Liposomal gene delivery systems.

Biodistribution and Pharmacokinetics. knowledge of therapeutic antisense molecules and aptamers as drugs of future.

REFERENCES

- 1. Y W. Chien, Novel Drug Delivery Systems, 2nd edition, revised and expanded, Marcel Dekker, Inc., New York, 1992.
- 2. S.P.Vyas and R.K.Khar, Controlled Drug Delivery concepts and advances, VallabhPrakashan, New Delhi, First edition 2002.
- 3. N.K. Jain, Controlled and Novel Drug Delivery, CBS Publishers & Distributors, NewDelhi, First edition 1997 (reprint in 2001).

ADVANCED BIOPHARMACEUTICS & PHARMACOKINETICS (MPH 202T)

Scope

This course is designed to impart knowledge and skills necessary for dose calculations, dose adjustments and to apply biopharmaceutics theories in practical problem solving. Basic theoretical discussions of the principles of biopharmaceutics and pharmacokinetics are provided to help the students' to clarify the concepts.

Objectives

Upon completion of this course it is expected that students will be able understand.

The basic concepts in biopharmaceutics and pharmacokinetics. The use raw data and derive the pharmacokinetic models and parameters the best describe the process of drug absorption,
distribution, metabolism and elimination.
The critical evaluation of biopharmaceutic studies involving drug
product equivalency.
The design and evaluation of dosage regimens of the drugs using
pharmacokinetic and biopharmaceutic parameters.
The potential clinical pharmacokinetic problems and application of
basics of pharmacokinetic

THEORY 60 Hrs

1. Drug Absorption from the Gastrointestinal Tract: 12 Gastrointestinal tract. Mechanism of drug absorption. Factors affecting drug absorption, pH-partition theory of drug absorption. Formuulation and physicochemical factors: Dissolution rate. Dissolution process. Noves-Whitney equation and dissolution, Factors affecting the dissolution rate. Gastrointestinal absorption: role of the dosage form: Solution (elixir, syrup and solution) as a dosage form, Suspension as a dosage form, Capsule as a dosage form, Tablet as a dosage form, Dissolution methods .Formulation and processing factors. Correlation of in vivo data with in vitro dissolution data.Transport model: Permeability-Solubility-Charge State and the pH Partition Hypothesis, Properties of the Gastrointestinal Tract (GIT), pH Microclimate Intracellular На Environment, Tight-Junction Complex.

2 Biopharmaceutic considerations in drug product design 12 Introduction. Vitro Drug Product Performance: biopharmaceutic factors affecting drug bioavailability, rate-limiting steps in drug absorption, physicochemical nature of the drug formulation factors affecting drug product performance, in vitro: dissolution and drug release testing, compendial methods of dissolution, alternative methods of dissolution testing, meeting dissolution requirements, problems of variable control in dissolution testingperformance of drug products. In vitro-in vivo correlation, dissolution profile comparisons, drug product stability.considerations in the design of a drug product.

3 Pharmacokinetics: Basic considerations. pharmacokinetic models, compartment modeling; one compartment model- IV bolus. IV infusion, extra-vascular, Multi compartment model:two compartment - model in brief, non-linear pharmacokinetics: cause of non-linearity. Michaelis - Menten equation, estimation of kmax and v_{max}. Drug interactions: introduction, the effect of proteinbindina interactions.the effect οf tissue-binding interactions.cvtochrome p450-based drua interactions.drug

interactions linked to transporters.

4 Drug Product Performance, In Vivo: Bioavailability and Bioequivalence: drug product performance, purpose of bioavailability studies, relative and absolute availability, methods for assessing bioavailability, bioequivalence studies, design and evaluation of bioequivalence studies, study designs, crossover study designs, evaluation of the data, bioequivalence example, study submission and drug review process. biopharmaceutics classification system, methods. Permeability: In-vitro, in-situ and In-vivo methods.generic biologics (biosimilar products), clinical significance of bioequivalence studies, special concerns in bioavailability and bioequivalence studies, generic substitution.

Products, Targeted Drug Delivery Systems and Biotechnological Products. Introduction to Pharmacokinetics and pharmacodynamic, drug interactions. Pharmacokinetics and pharmacodynamics of biotechnology drugs. Introduction, Proteins and peptides, Monoclonal antibodies, Oligonucleotides, Vaccines (immunotherapy), Gene therapies.

12 Hrs

12 Hrs

12 Hrs

REFERENCES

- 1. Biopharmaceutics and Clinical Pharmacokinetics by Milo Gibaldi, 4th edition, Philadelphia, Lea and Febiger, 1991
- 2. Biopharmaceutics and Pharmacokinetics, A. Treatise, D.M. Brahmankar and Sunil B. Jaiswal., VallabPrakashan, Pitampura, Delhi
- 3. Applied Biopharmaceutics and Pharmacokinetics by Shargel. Land YuABC, 2ndedition, Connecticut Appleton Century Crofts, 1985
- 4. Textbook of Biopharmaceutics and Pharmacokinetics, Dr. Shobha Rani R. Hiremath.Prism Book
- 5. Pharmacokinetics by Milo Gibaldi and D. Perrier, 2nd edition, Marcel Dekker Inc., New York, 1982
- 6. Current Concepts in Pharmaceutical Sciences: Biopharmaceutics, Swarbrick. J, Leaand Febiger, Philadelphia, 1970
- Clinical Pharmacokinetics, Concepts and Applications 3rd edition by MalcolmRowland and Thom~ N. Tozer, Lea and Febiger, Philadelphia, 1995
- 8. Dissolution, Bioavailability and Bioequivalence, Abdou. H.M, Mack PublishingCompany, Pennsylvania 1989
- 9. Biopharmaceutics and Clinical Pharmacokinetics, An Introduction, 4th edition, revised and expande by Robert. E. Notari, Marcel Dekker Inc, New York and Basel, 1987.
- Biopharmaceutics and Relevant Pharmacokinetics by John. G Wagner and M.Pemarowski, 1st edition, Drug Intelligence Publications, Hamilton, Illinois, 1971.
- 11. Encyclopedia of Pharmaceutical Technology, Vol 13, James Swarbrick, James. G.Boylan, Marcel Dekker Inc, New York, 1996.
- 12. Basic Pharmacokinetics, 1 st edition, Sunil S Jambhekarand Philip J Breen, pharmaceutical press, RPS Publishing, 2009.
- 13. Absorption and Drug Development- Solubility, Permeability, and Charge State, Alex Avdeef, John Wiley & Sons, Inc, 2003.

COMPUTER AIDED DRUG DELIVERY SYSTEM (MPH 203T)

Scope

This course is designed to impart knowledge and skills necessary for computer Applications in pharmaceutical research and development who want to understand the application of computers across the entire drug research and development process. Basic theoretical discussions of the principles of more integrated and coherent use of computerized information (informatics) in the drug development process are provided to help the students to clarify the concepts.

O				

Upon completion of this course it is expected that students will be able to understand.

History of Computers in Pharmaceutical Research and Development
Computational Modeling of Drug Disposition
Computers in Preclinical Development
Optimization Techniques in Pharmaceutical Formulation
Computers in Market Analysis
Computers in Clinical Development
Artificial Intelligence (AI) and Robotics
Computational fluid dynamics(CFD)

THEORY 60 Hrs

- and 12 Pharmaceutical Research 1. a. Computers in Development: A General Overview: History of Computers in Hrs Pharmaceutical Research and Development. Statistical modeling in Pharmaceutical research and development: Descriptive versus Mechanistic Modeling, Statistical Parameters. Confidence Regions, Nonlinearity at the Optimum, Sensitivity Analysis, Optimal Design, Population Modeling b. Quality-by-Design In Pharmaceutical Development: Introduction, ICH Q8 guideline, Regulatory and industry views on QbD, Scientifically based QbD - examples of application.
- 2 Computational Modeling Of Drug Disposition: Introduction ,Modeling Techniques: Drug Absorption, Solubility, Intestinal Hrs Permeation, Drug Distribution, Drug Excretion, Active Transport; P-qp, BCRP, Nucleoside Transporters, hPEPT1, ASBT, OCT, OATP, BBB-Choline Transporter.

12

of 12 3 Computer-aided formulation development:: Concept Hrs Optimization parameters, Factorial optimization, Optimization technology & Screening design. Computers in Pharmaceutical Formulation: Development of pharmaceutical emulsions, microemulsion drug carriers Legal Protection of Innovative Uses of Computers in R&D. The Ethics of Computing in Pharmaceutical Research. Computers in Market analysis

> 12 Hrs

- 4 a. Computer-aided biopharmaceutical characterization: Gastrointestinal absorption simulation. Introduction, Theoretical background, Model construction, Parameter sensitivity analysis, Virtual trial, Fed vs. fasted state, In vitro dissolution and in vitro-in vivo correlation. Biowaiver considerations
 - b. Computer Simulations in Pharmacokinetics and Pharmacodynamics: Introduction, Computer Simulation: Whole Organism, Isolated Tissues, Organs, Cell, Proteins and Genes.
 - c. Computers in Clinical Development: Clinical Data Collection and Management, Regulation of Computer Systems
- 5 Artificial Intelligence (AI), Robotics and Computational fluid dynamics: General overview, Pharmaceutical Automation, Hrs Pharmaceutical applications, Advantages and Disadvantages. Current Challenges and Future Directions.

- 1. Computer Applications in Pharmaceutical Research and Development, Sean Ekins, 2006, John Wiley & Sons.
- 2. Computer-Aided Applications in Pharmaceutical Technology, 1st Edition, Jelena Djuris, Woodhead Publishing
- 3. Encyclopedia of Pharmaceutical Technology, Vol 13, James Swarbrick, James. G.Boylan, Marcel Dekker Inc, New York, 1996.

COSMETICS AND COSMECEUTICALS (MPH 204T)

Scope

This course is designed to impart knowledge and skills necessary forthefundamental need for cosmetic and cosmeceutical products.

_			_
O	h	iect	ives

and syndetbars.

Ob	pjectives	
Uроі	n completion of the course, the students shall be able to understand Key ingredients used in cosmetics and cosmeceuticals. Key building blocks for various formulations. Current technologies in the market	
	☐ Various key ingredients and basic science to develop cosmetics an cosmeceuticals	ıd
	□ Scientific knowledge to develop cosmetics and cosmeceuticals wit desired Safety, stability, and efficacy.	:h
TH	IEORY 60 Hi	rs
1.	Cosmetics - Regulatory: Definition of cosmetic products as per 12 Indian regulation. Indian regulatory requirements for labeling of Hrs cosmetics Regulatory provisions relating to import of cosmetics., Misbranded and spurious cosmetics. Regulatory provisions relating to manufacture of cosmetics - Conditions for obtaining license, prohibition of manufacture and sale of certain cosmetics, loan license, offences and penalties.	
2	Cosmetics - Biological aspects: Structure of skin relating to problems like dry skin, acne, pigmentation, prickly heat, wrinkles and body odor. Structure of hair and hair growth cycle. Common problems associated with oral cavity. Cleansing and care needs for face, eye lids, lips, hands, feet, nail, scalp, neck, body and under-arm.	
3	Formulation Building blocks: Building blocks for different 12 product formulations of cosmetics/cosmeceuticals. Surfactants – Hrs Classification and application. Emollients, rheological additives: classification and application. Antimicrobial used as preservatives, their merits and demerits. Factors affecting microbial preservative efficacy. Building blocks for formulation of a moisturizing cream,	

Perfumes; Classification of perfumes. Perfume ingredients listed as allergens in EU regulation.

vanishing cream, cold cream, shampoo and toothpaste. Soaps

- Controversial ingredients: Parabens, formaldehyde liberators, dioxane.
- 4 Design of cosmeceutical products: Sun protection, sunscreens 12 classification and regulatory aspects. Addressing dry skin, acne, Hrs sun-protection, pigmentation, prickly heat, wrinkles, body odor., dandruff, dental cavities, bleeding gums, mouth odor and sensitive teeth through cosmeceutical formulations.
- 5 Herbal Cosmetics: Herbal ingredients used in Hair care, skin 12 care and oral care. Review of guidelines for herbal cosmetics by private bodies like cosmos with respect to preservatives, emollients, foaming agents, emulsifiers and rheology modifiers. Challenges in formulating herbal cosmetics.

- 1. Harry's Cosmeticology. 8th edition.
- 2. Poucher'sperfumecosmeticsandSoaps,10th edition.
- 3. Cosmetics Formulation, Manufacture and quality control, PP.Sharma,4th edition
- Handbook of cosmetic science and Technology A.O.Barel, M.Paye and H.I. Maibach. 3 rd edition
- 5. Cosmetic and Toiletries recent suppliers catalogue.
- 6. CTFA directory.

PHARMACEUTICS PRACTICALS - II (MPH 205P)

- 1. To study the effect of temperature change, non solvent addition, incompatible polymer addition in microcapsules preparation
- 2. Preparation and evaluation of Alginate beads
- 3. Formulation and evaluation of gelatin /albumin microspheres
- 4. Formulation and evaluation of liposomes/niosomes
- 5. Formulation and evaluation of spherules
- 6. Improvement of dissolution characteristics of slightly soluble drug by Solid dispersion technique.
- 7. Comparison of dissolution of two different marketed products /brands
- 8. Protein binding studies of a highly protein bound drug & poorly protein bound drug
- 9. Bioavailability studies of Paracetamol in animals.
- 10. Pharmacokinetic and IVIVC data analysis by Winnoline^R software
- 11. In vitro cell studies for permeability and metabolism
- 12. DoE Using Design Expert Software
- 13. Formulation data analysis Using Design Expert Software
- 14. Quality-by-Design in Pharmaceutical Development
- 15. Computer Simulations in Pharmacokinetics and Pharmacodynamics
- 16. Computational Modeling Of Drug Disposition
- 17. To develop Clinical Data Collection manual
- 18. To carry out Sensitivity Analysis, and Population Modeling.
- 19. Development and evaluation of Creams
- 20. Development and evaluation of Shampoo and Toothpaste base
- 21. To incorporate herbal and chemical actives to develop products
- 22. To address Dry skin, acne, blemish, Wrinkles, bleeding gums and dandruff

PHARMACEUTICALCHEMISTRY (MPC)

MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES (MPC 101T)

Scope

This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are NMR, Mass spectrometer, IR, HPLC, GC etc.

Objectives

After completion of course student is able to know about chemicals and excipients

The analysis of various drugs in single and combination dosage forms
 Theoretical and practical skills of the instruments

THEORY 60 Hrs

- a. UV-Visible spectroscopy: Introduction, Theory, Laws, 10
 Instrumentation associated with UV-Visible spectroscopy, Choice Hrs
 of solvents and solvent effect and Applications of UV-Visible
 spectroscopy, Difference/ Derivative spectroscopy.
 - b. IR spectroscopy: Theory, Modes of Molecular vibrations, Sample handling, Instrumentation of Dispersive and Fourier-Transform IR Spectrometer, Factors affecting vibrational frequencies and Applications of IR spectroscopy, Data Interpretation.
 - c. Spectroflourimetry: Theory of Fluorescence, Factors affecting fluorescence (Characterestics of drugs that can be analysed by flourimetry), Quenchers, Instrumentation and Applications of fluorescence spectrophotometer.
 - d. Flame emission spectroscopy and Atomic absorption spectroscopy: Principle, Instrumentation, Interferences and Applications.

10

Hrs

2 NMR spectroscopy: Quantum numbers and their role in NMR, Principle, Instrumentation, Solvent requirement in NMR, Relaxation process, NMR signals in various compounds, Chemical shift, Factors influencing chemical shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR and 13C NMR. Applications of NMR spectroscopy.

- 3 Mass Spectroscopy: Principle, Theory, Instrumentation of Mass 10 Spectroscopy, Different types of ionization like electron impact, Hrs chemical, field, FAB and MALDI, APCI, ESI, APPI Analyzers of Quadrupole and Time of Flight, Mass fragmentation and its rules, Meta stable ions, Isotopic peaks and Applications of Mass spectroscopy.
- 4 Chromatography: Principle, apparatus, instrumentation, 10 chromatographic parameters, factors affecting resolution, isolation Hrs of drug from excipients, data interpretation and applications of the following:
 - a) Thin Layer chromatography
 - b) High Performance Thin Layer Chromatography
 - c) Ion exchange chromatography
 - d) Column chromatography
 - e) Gas chromatography
 - f) High Performance Liquid chromatography
 - g) Ultra High Performance Liquid chromatography
 - h) Affinity chromatography
 - i) Gel Chromatography
- 5 a.Electrophoresis: Principle, Instrumentation, Working 10 conditions, factors affecting separation and applications of the Hrs following:
 - a) Paper electrophoresis b) Gel electrophoresis c) Capillary electrophoresis d) Zone electrophoresis e) Moving boundary electrophoresis f) Iso electric focusing
 - b.X ray Crystallography: Production of X rays, Different X ray methods, Bragg's law, Rotating crystal technique, X ray powder technique, Types of crystals and applications of X-ray diffraction.
- 6 a. Potentiometry: Principle, working, Ion selective Electrodes 10 and Application of potentiometry.
 - b. Thermal Techniques: Principle, thermal transitions and Instrumentation (Heat flux and power-compensation and designs), Modulated DSC, Hyper DSC, experimental parameters (sample preparation, experimental conditions, calibration, heating and cooling rates, resolution, source of errors) and their influence, advantage and disadvantages, pharmaceutical applications. Differential Thermal Analysis (DTA): Principle, instrumentation

and advantage and disadvantages, pharmaceutical applications, derivative differential thermal analysis (DDTA). TGA: Principle, instrumentation. factors affecting results. advantage disadvantages, pharmaceutical applications.

- 1. Spectrometric Identification of Organic compounds Robert M Silverstein, Sixth edition. John Wiley & Sons. 2004.
- 2. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman, 5th edition, Eastern press, Bangalore, 1998.

 3. Instrumental methods of analysis – Willards, 7th edition, CBS publishers.
- 4. Practical Pharmaceutical Chemistry Beckett and Stenlake, Vol II, 4th edition, CBS Publishers, New Delhi, 1997.
- 5. Organic Spectroscopy William Kemp, 3rd edition, ELBS, 1991.
- 6. Quantitative Analysis of Drugs in Pharmaceutical formulation P D Sethi, 3rd Edition, CBS Publishers, New Delhi, 1997.
- 7. Pharmaceutical Analysis Modern Methods Part B I W Munson. Vol. 11. Marcel. Dekker Series
- 8. Spectroscopy of Organic Compounds, 2nd edn., P.S/Kalsi. Wilev estern Ltd.. Delhi.
- 9. Textbook of Pharmaceutical Analysis, KA.Connors, 3rd Edition, John Wiley & Sons. 1982.

ADVANCED ORGANIC CHEMISTRY - I (MPC 102T)

Scope

The subject is designed to provide in-depth knowledge about advances in organic chemistry, different techniques of organic synthesis and their applications to process chemistry as well as drug discovery.

\sim			
()	hie	ctr	ves
\sim	-	Cu	100

Upon completion of course, the student shall be to understand
The principles and applications of reterosynthesis The mechanism & applications of various named reactions
The concept of disconnection to develop synthetic routes for small target molecule.
The various catalysts used in organic reactions
The chemistry of heterocyclic compounds

THEORY 60 Hrs

- 1. Basic Aspects of Organic Chemistry:
 - 1. Organic intermediates: Carbocations, carbanions, free Hrs radicals, carbenes and nitrenes. Their method of formation, stability and synthetic applications.

12

12

Hrs

- 2. Types of reaction mechanisms and methods of determining them,
- Detailed knowledge regarding the reactions, mechanisms and their relative reactivity and orientations.

Addition reactions

- a) Nucleophilic uni- and bimolecular reactions (SN1 and SN2)
- b) Elimination reactions (E1 & E2; Hoffman & Saytzeff's rule)
- c) Rearrangement reaction
- 2 Study of mechanism and synthetic applications of following named Reactions:

Ugi reaction, Brook rearrangement, Ullmann coupling reactions, Dieckmann Reaction, Doebner-Miller Reaction, Sandmeyer Reaction, Mitsunobu reaction, Mannich reaction, Vilsmeyer-Haack Reaction, Sharpless asymmetric epoxidation, Baeyer-Villiger oxidation, Shapiro & Suzuki reaction, Ozonolysis and Michael addition reaction

3 Synthetic Reagents & Applications:
Aluminiumisopropoxide, N-bromosuccinamide, diazomethane,
dicyclohexylcarbodimide, Wilkinson reagent, Witting reagent.
Osmium tetroxide, titanium chloride, diazopropane, diethyl
azodicarboxylate, Triphenylphosphine, Benzotriazol-1-yloxy) tris
(dimethylamino) phosphonium hexafluoro-phosphate (BOP).

12 Hrs

Protecting groups

- a. Role of protection in organic synthesis
- b. Protection for the hydroxyl group, including 1,2-and1,3-diols: ethers, esters, carbonates, cyclic acetals & ketals
- c. Protection for the Carbonyl Group: Acetals and Ketals
- d. Protection for the Carboxyl Group: amides and hydrazides, esters
- e. Protection for the Amino Group and Amino acids: carbamates and amides
- 4 Heterocyclic Chemistry:

12 Hrs

Organic Name reactions with their respective mechanism and application involved in synthesis of drugs containing five, six membered and fused hetrocyclics such as Debus-Radziszewski imidazole synthesis, Knorr Pyrazole Synthesis Pinner Pyrimidine Synthesis, Combes Quinoline Synthesis, Bernthsen Acridine Synthesis, Smiles rearrangement and Traube purine synthesis.

Synthesis of few representative drugs containing these hetrocyclic nucleus such as Ketoconazole. Metronidazole. Miconazole. celecoxib. antipyrin. Metamizole sodium. Terconazole. Alprazolam. Triamterene. Sulfamerazine. Trimethoprim, Hydroxychloroguine, Quinine, Chloroquine, Prochlorpherazine, Quinacrine, Amsacrine, Promazine. Chlorpromazine, The ophylline, Mercaptopurine and Thioguanine.

5 Synthon approach and retrosynthesis applications

12 Hrs

- Basic principles, terminologies and advantages of retrosynthesis; guidelines for dissection of molecules. Functional group interconvertion and addition (FGI and FGA)
- ii. C-X disconnections; C-C disconnections alcohols and carbonyl compounds; 1,2-, 1,3-,1,4-, 1,5-, 1,6-difunctionalized compounds
- iii. Strategies for synthesis of three, four, five and six-membered ring.

- 1. "Advanced Organic chemistry, Reaction, Mechanisms and Structure", J. March, John Wiley and Sons, New York.
- 2. "Mechanism and Structure in Organic Chemistry", ES Gould, Hold Rinchart and Winston, New York.
- 3. "Organic Chemistry" Clayden, Greeves, Warren and Woihers., Oxford University Press 2001.
- 4. "Organic Chemistry" Vol I and II. I.L. Finar. ELBS, Pearson Education Lts, Dorling Kindersley 9India) Pvt. Ltd.,.
- 5. A guide to mechanisms in Organic Chemistry, Peter Skyes (Orient Longman, New Delhi).
- 6. Reactive Intermediates in Organic Chemistry, Tandom and Gowel, Oxford & IBH Publishers.
- 7. Combinational Chemistry Synthesis and applications Stephen R Wilson & Anthony W Czarnik, Wiley Blackwell.
- 8. Carey, Organic Chemistry, 5th Edition (Viva Books Pvt. Ltd.)
- 9. Organic Synthesis The Disconnection Approach, S. Warren, Wily India
- 10. Principles of Organic Synthesis, ROC Norman and JM Coxan, Nelson Thorns.
- 11. Organic Synthesis Special Techniques. VK Ahluwalia and R Agarwal, Narosa Publishers.
- 12. Organic Reaction Mechanisms IVth Edtn, VK Ahluwalia and RK Parashar, Narosa Publishers.

ADVANCED MEDICINAL CHEMISTRY (MPC 103T)

Scope

The subject is designed to impart knowledge about recent advances in the field of medicinal chemistry at the molecular level including different techniques for the rational drug design.

~ 1			
() t	110	ctiv	Jes
	$\gamma_1 \sim$	Cu	

At completion of this course it is expected that students will be able to understand

- Different stages of drug discoveryRole of medicinal chemistry in drug research
- □ Different techniques for drug discovery
- □ Various strategies to design and develop new drug like molecules for biological targets
- Peptidomimetics

THEORY 60 Hrs

Drug discovery: Stages of drug discovery, lead discovery; 12 identification, validation and diversity of drug targets.

Biological drug targets: Receptors, types, binding and activation, theories of drug receptor interaction, drug receptor interactions, agonists vs antagonists, artificial enzymes.

2 Prodrug Design and Analog design:

- 12 Hrs
- a) Prodrug design: Basic concept, Carrier linked prodrugs/ Bioprecursors, Prodrugs of functional group, Prodrugs to improve patient acceptability, Drug solubility, Drug absorption and distribution, site specific drug delivery and sustained drug action. Rationale of prodrug design and practical consideration of prodrug design.
- b) Combating drug resistance: Causes for drug resistance, strategies to combat drug resistance in antibiotics and anticancer therapy, Genetic principles of drug resistance.
- c) Analog Design: Introduction, Classical & Non classical, Bioisosteric replacement strategies, rigid analogs,

alteration of chain branching, changes in ring size, ring position isomers, design of stereo isomers and geometric isomers, fragments of a lead molecule, variation in inter atomic distance.

a) Medicinal chemistry aspects of the following class of drugs

12 Hrs

Systematic study, SAR, Mechanism of action and synthesis of new generation molecules of following class of drugs:

- a) Anti-hypertensive drugs, Psychoactive drugs, Anticonvulsant drugs, H1 & H2 receptor antagonist, COX1 & COX2 inhibitors, Adrenergic & Cholinergic agents, Antineoplastic and Antiviral agents.
- b) Stereochemistry and Drug action: Realization that stereo selectivity is a pre-requisite for evolution. Role of chirality in selective and specific therapeutic agents. Case studies, Enantio selectivity in drug adsorption, metabolism, distribution and elimination.
- 4 Rational Design of Enzyme Inhibitors 12
 Enzyme kinetics & Principles of Enzyme inhibitors, Enzyme Hrs
 inhibitors in medicine, Enzyme inhibitors in basic research,
 rational design of non-covalently and covalently binding enzyme
 inhibitors.
- Peptidomimetics
 Therapeutic values of Peptidomimetics, design of Hrs peptidomimetics by manipulation of the amino acids, modification of the peptide backbone, incorporating conformational constraints locally or globally. Chemistry of prostaglandins, leukotrienes and thromboxones.

- 1. Medicinal Chemistry by Burger, Vol I -VI.
- Wilson and Gisvold's Text book of Organic Medicinal and Pharmaceutical Chemistry, 12th Edition, Lppincott Williams & Wilkins, Woltess Kluwer (India) Pvt.Ltd, New Delhi.
- 3. Comprehensive Medicinal Chemistry Corwin and Hansch.
- 4. Computational and structural approaches to drug design edited by Robert M Stroud and Janet. F Moore

- 5. Introduction to Quantitative Drug Design by Y.C. Martin.
- 6. Principles of Medicinal Chemistry by William Foye, 7th Edition, Ippincott Williams & Wilkins, Woltess Kluwer (India) Pvt.Ltd, New Delhi.
- 7. Drug Design Volumes by Arienes, Academic Press, Elsevier Publishers, Noida, Uttar Pradesh..
- 8. Principles of Drug Design by Smith.
- 9. The Organic Chemistry of the Drug Design and Drug action by Richard B.Silverman. II Edition. Elsevier Publishers. New Delhi.
- 10. An Introduction to Medicinal Chemistry, Graham L.Patrick, III Edition, Oxford University Press, USA.
- 11. Biopharmaceutics and pharmacokinetics, DM.Brahmankar, Sunil B. Jaiswal II Edition, 2014, Vallabh Prakashan, New Delhi.
- 12. Peptidomimetics in Organic and Medicinal Chemistry by Antonio Guarna and Andrea Trabocchi, First edition, Wiley publishers.

CHEMISTRY OF NATURAL PRODUCTS (MPC 104T)

Scope

The subject is designed to provide detail knowledge about chemistry of medicinal compounds from natural origin and general methods of structural elucidation of such compounds. It also emphasizes on isolation, purification and characterization of medicinal compounds from natural origin.

to

Hrs

characte	erization of medicinal compounds from natural origin.	
Objec	tives	
	pletion of this course it is expected that students will be	able t
underst		
	Different types of natural compounds and their chemistr medicinal importance	y and
	The importance of natural compounds as lead molecules for ne discovery	w drug
	The concept of rDNA technology tool for new drug discovery	
	General methods of structural elucidation of compounds of origin	natural
	Isolation, purification and characterization of simple characterization of simple characterization of simple characterization of simple characterization.	nemical
THEO	RY	60 Hrs
1. St	tudy of Natural products as leads for new pharmaceuticals	12
	r the following class of drugs	Hrs
a)	Drugs Affecting the Central Nervous System: Morphine Alkaloids	
b)	Anticancer Drugs: Paclitaxel and Docetaxel, Etoposide, and Teniposide	
c)	Cardiovascular Drugs: Lovastatin, Teprotide and Dicoumarol	
d)	Neuromuscular Blocking Drugs: Curare alkaloids	
e)	Anti-malarial drugs and Analogues	
f)	Chemistry of macrolid antibiotics (Erythromycin, Azithromycin,	
	Roxithromycin, and Clarithromycin) and β - Lactam antibiotics (Cephalosporins and Carbapenem)	
2 a)	Alkaloids	12

General introduction, classification, isolation, purification, molecular modification and biological activity of alkaloids, general methods of structural determination of alkaloids, structural elucidation and stereochemistry of ephedrine, morphine, ergot, emetine and reserpine.

b) Flavonoids

Introduction, isolation and purification of flavonoids, General methods of structural determination of flavonoids; Structural elucidation of quercetin.

c) Steroids

General introduction, chemistry of sterols, sapogenin and cardiac glycosides. Stereochemistry and nomenclature of steroids, chemistry of contraceptive agents male & female sex hormones (Testosterone, Estradiol, Progesterone), adrenocorticoids (Cortisone), contraceptive agents and steroids (Vit – D).

3 a) Terpenoids

12 Hrs

12

Hrs

Classification, isolation, isoprene rule and general methods of structural elucidation of Terpenoids; Structural elucidation of drugs belonging to mono (citral, menthol, camphor), di(retinol, Phytol, taxol) and tri terpenoids (Squalene, Ginsenoside) carotinoids (β carotene).

b) Vitamins

Chemistry and Physiological significance of Vitamin A, B1, B2, B12, C, E, Folic acid and Niacin.

- a). Recombinant DNA technology and drug discovery rDNA technology, hybridoma technology, New pharmaceuticals derived from biotechnology; Oligonucleotide therapy. Gene therapy: Introduction, Clinical application and recent advances in gene therapy, principles of RNA & DNA estimation
 - b). Active constituent of certain crude drugs used in Indigenous system Diabetic therapy Gymnema sylvestre, Salacia reticulate, Pterocarpus marsupiam, Swertia chirata, Trigonella foenum graccum; Liver dysfunction Phyllanthus niruri; Antitumor Curcuma longa Linn.
- 5 Structural Characterization of natural compounds Structural characterization of natural compounds using IR, 1HNMR, 13CNMR and MS Spectroscopy of specific drugs e.g., Penicillin, Morphine, Camphor, Vit-D, Quercetin and Digitalis glycosides.

12 Hrs

- 1. Modern Methods of Plant Analysis, Peech and M.V.Tracey, Springer Verlag, Berlin, Heidelberg.
- 2. Phytochemistry Vol. I and II by Miller, Jan Nostrant Rein Hld.
- 3. Recent advances in Phytochemistry Vol. I to IV Scikel Runeckles, Springer Science & Business Media.
- 4. Chemistry of natural products Vol I onwards IWPAC.
- 5. Natural Product Chemistry Nakanishi Gggolo, University Science Books, California.
- 6. Natural Product Chemistry "A laboratory guide" Rapheal Khan.
- 7. The Alkaloid Chemistry and Physiology by RHF Manske, Academic Press.
- 8. Introduction to molecular Phytochemistry CHJ Wells, Chapmannstall.
- 9. Organic Chemistry of Natural Products Vol I and II by Gurdeep and Chatwall, Himalaya Publishing House.
- 10. Organic Chemistry of Natural Products Vol I and II by O.P. Agarwal, Krishan Prakashan.
- 11. Organic Chemistry Vol I and II by I.L. Finar, Pearson education.
- 12. Elements of Biotechnology by P.K. Gupta. Rastogi Publishers.
- 13. Pharmaceutical Biotechnology by S.P.Vvas and V.K.Dixit, CBS Publishers.
- 14. Biotechnology by Purohit and Mathur, Agro-Bios, 13th edition.
- 15. Phytochemical methods of Harborne, Springer, Netherlands.
- 16. Burger's Medicinal Chemistry.

PHARMACEUTICAL CHEMISTRY PRACTICAL - I (MPC 105P)

- 1. Analysis of Pharmacopoeial compounds and their formulations by UV Vis spectrophotometer, RNA & DNA estimation
- Simultaneous estimation of multi component containing formulations by UV spectrophotometry
- 3. Experiments based on Column chromatography
- 4. Experiments based on HPLC
- 5. Experiments based on Gas Chromatography
- 6. Estimation of riboflavin/quinine sulphate by fluorimetry
- 7. Estimation of sodium/potassium by flame photometry

To perform the following reactions of synthetic importance

- 1. Purification of organic solvents, column chromatography
- 2. Claisen-schimidt reaction.
- 3. Benzyllic acid rearrangement.
- 4. Beckmann rearrangement.
- 5. Hoffmann rearrangement
- 6. Mannich reaction
- 7. Synthesis of medicinally important compounds involving more than one step along with purification and Characterization using TLC, melting point and IR spectroscopy (4 experiments)
- 8. Estimation of elements and functional groups in organic natural compounds
- Isolation, characterization like melting point, mixed melting point, molecular weight determination, functional group analysis, co-chromatographic technique for identification of isolated compounds and interpretation of UV and IR data.
- Some typical degradation reactions to be carried on selected plant constituents

ADVANCED SPECTRAL ANALYSIS (MPC 201T)

Scope

This subject deals with various hyphenated analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are LC-MS, GC-MS, ATR-IR, DSC etc.

O.	bj	E	ec	ti	V	e	S
	_				i.		

3

Mass Spectroscopy

At completion of this course it is expected that students will be able to understand-

- Interpretation of the NMR, Mass and IR spectra of various organic compounds
- ☐ Theoretical and practical skills of the hyphenated instruments
- ☐ Identification of organic compounds

THEORY 60Hrs

- UV and IR spectroscopy: 12
 Wood ward Fieser rule for 1,3- butadienes, cyclic dienes and α, Hrs
 β-carbonyl compounds and interpretation compounds of enones.
 ATR-IR, IR Interpretation of organic compounds.
- NMR spectroscopy: 12
 1-D and 2-D NMR, NOESY and COSY, HECTOR, INADEQUATE Hrs
 techniques Interpretation of organic compounds
- techniques, Interpretation of organic compounds.

12

Hrs

- Mass fragmentation and its rules, Fragmentation of important functional groups like alcohols, amines, carbonyl groups and alkanes, Meta stable ions, Mc Lafferty rearrangement, Ring rule, Isotopic peaks, Interpretation of organic compounds.
- 4 Chromatography:
 Principle, Instrumentation and Applications of the following:
 A) GC-MS b) GC-AAS c) LC-MS d) LC-FTIR e) LC-NMR f) CE-MS g) High Performance Thin Layer chromatography h) Super critical fluid chromatography i) Ion Chromatography j) I-EC (Ion-Exclusion Chromatography) k) Flash chromatography

- 5 a). Thermal methods of analysis 12 Introduction, principle, instrumentation and application of DSC, Hrs DTA and TGA
 - b). Raman Spectroscopy Introduction, Principle, Instrumentation and Applications.
 - c). Radio immuno assay Biological standardization, bioassay, ELISA, Radioimmuno assay of digitalis and insulin.

- 1. Spectrometric Identification of Organic compounds Robert M Silverstein, Sixth edition, John Wiley & Sons, 2004.
- 2. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman, 5th edition, Eastern press, Bangalore, 1998.

 3. Instrumental methods of analysis – Willards, 7th edition, CBS publishers.
- 4. Organic Spectroscopy William Kemp, 3rd edition, ELBS, 1991.
- 5. Quantitative analysis of Pharmaceutical formulations by HPTLC P D Sethi, CBS Publishers, New Delhi,
- 6. Quantitative Analysis of Drugs in Pharmaceutical formulation P D Sethi, 3rd Edition, CBS Publishers, New Delhi, 1997.
- 7. Pharmaceutical Analysis- Modern methods Part B J W Munson, Volume 11, Marcel Dekker Series

ADVANCED ORGANIC CHEMISTRY - II (MPC 202T)

Scope

The subject is designed to provide in-depth knowledge about advances in organic chemistry, different techniques of organic synthesis and their applications to process chemistry as well as drug discovery.

Objectives Upon completion of course, the student shall able to understand The principles and applications of Green chemistry The concept of peptide chemistry. The various catalysts used in organic reactions The concept of stereochemistry and asymmetric synthesis. THEORY 60 Hrs 12 1. Green Chemistry: a. Introduction, principles of green chemistry Hrs b. Microwave assisted reactions: Merit and demerits of its use. increased reaction rates, mechanism, superheating effects of microwave, effects of solvents in microwave assisted synthesis, microwave technology in process optimization, its applications in various organic reactions and heterocycles synthesis c. Ultrasound assisted reactions: Types of sonochemical reactions, homogenous, heterogeneous liquid-liquid and liquid-solid reactions, synthetic applications d. Continuous flow reactors: Working principle, advantages and synthetic applications. 2 Chemistry of peptides 12 Hrs a. Coupling reactions in peptide synthesis b. Principles of solid phase peptide synthesis, t-BOC and FMOC protocols, various solid supports and linkers: Activation procedures, peptide bond formation, deprotection and cleavage from resin, low and high HF cleavage protocols, formation of free peptides and peptide amides, purification and case studies, site-specific chemical modifications of peptides c. Segment and seguential strategies for solution phase peptide synthesis with any two case studies d. Side reactions in peptide synthesis: Deletion peptides, side

reactions initiated by proton abstraction, protonation, overactivation and side reactions of individual amino acids.

Photochemical Reactions 12
Basic principles of photochemical reactions. Photo-oxidation, Hrs photo-addition and photo-fragmentation.

Pericyclic reactions

Mechanism, Types of pericyclic reactions such as cyclo addition, electrocyclic reaction and sigmatrophic rearrangement reactions with examples

4 Catalysis:

12 Hrs

- Types of catalysis, heterogeneous and homogenous catalysis, advantages and disadvantages
- Heterogeneous catalysis preparation, characterization, kinetics, supported catalysts, catalyst deactivation and regeneration, some examples of heterogeneous catalysis used in synthesis of drugs.
- Homogenous catalysis, hydrogenation, hydroformylation, hydrocyanation, Wilkinson catalysts, chiral ligands and chiral induction, Ziegler-Natta catalysts, some examples of homogenous catalysis used in synthesis of drugs
- d. Transition-metal and Organo-catalysis in organic synthesis: Metal-catalyzed reactions
- e. Biocatalysis: Use of enzymes in organic synthesis, immobilized enzymes/cells in organic reaction.
- f. Phase transfer catalysis theory and applications
- 5 Stereochemistry & Asymmetric Synthesis

12 Hrs

- a. Basic concepts in stereochemistry optical activity, specific rotation, racemates and resolution of racemates, the Cahn, Ingold, Prelog (CIP) sequence rule, meso compounds, pseudo asymmetric centres, axes of symmetry, Fischers D and L notation, cis-trans isomerism, E and Z notation.
- b. Methods of asymmetric synthesis using chiral pool, chiral auxiliaries and catalytic asymmetric synthesis, enantiopure separation and Stereo selective synthesis with examples.

- 1. "Advanced Organic chemistry, Reaction, mechanisms and structure", J March, John Wiley and sons, New York.
- "Mechanism and structure in organic chemistry", ES Gould, Hold Rinchart and Winston, New York.
- 3. "Organic Chemistry" Clayden, Greeves, Warren and Woihers., Oxford University Press 2001.
- 4. "Organic Chemistry" Vol I and II. I.L. Finar. ELBS, Sixth ed., 1995.
- 5. Carey, Organic chemistry, 5th edition (Viva Books Pvt. Ltd.)
- 6. Organic synthesis-the disconnection approach, S. Warren, Wily India
- 7. Principles of organic synthesis, ROCNorman and JMCoxan, Nelson thorns
- 8. Organic synthesis- Special techniques VK Ahluwalia and R Aggarwal, Narosa Publishers.
- Organic reaction mechanisms IV edtn, VK Ahluwalia and RK Parashar, Narosa Publishers.

COMPUTER AIDED DRUG DESIGN (MPC 203T)

Scope

The subject is designed to impart knowledge on the current state of the art techniques involved in computer assisted drug design.

C	bjectives											
At	completion	of	this	course	it	is	expected	that	students	will	be	able
un	derstand											

Role of CADD in drug discovery
 Different CADD techniques and their applications
 Various strategies to design and develop new drug like molecules.
 Working with molecular modeling softwares to design new drug molecules
 The in silico virtual screening protocols

Theory 60 Hrs

1. Introduction to Computer Aided Drug Design (CADD) 12

1. Introduction to Computer Aided Drug Design (CADD)

History, different techniques and applications. Quantitative Structure Activity Relationships: Basics

History and development of QSAR: Physicochemical parameters and methods to calculate physicochemical parameters: Hammett equation and electronic parameters (sigma), lipophilicity effects and parameters (log P, pi-substituent constant), steric effects (Taft steric and MR parameters) Experimental and theoretical approaches for the determination of these physicochemical parameters.

2 Quantitative Structure Activity Relationships: Applications Hansch analysis, Free Wilson analysis and relationship between them, Advantages and disadvantages; Deriving 2D-QSAR equations.

12 Hrs

Hrs

tο

3D-QSAR approaches and contour map analysis.

Statistical methods used in QSAR analysis and importance of statistical parameters.

3 Molecular Modeling and Docking

12

a) Molecular and Quantum Mechanics in drug design.

Hrs

b) Energy Minimization Methods: comparison between global

- minimum conformation and bioactive conformation
- Molecular docking and drug receptor interactions: Rigid docking, flexible docking and extra-precision docking. Agents acting on enzymes such as DHFR, HMG-CoA reductase and HIV protease, choline esterase (AchE & BchE)
- 4 Molecular Properties and Drug Design

12 Hrs

12

Hrs

- a) Prediction and analysis of ADMET properties of new molecules and its importance in drug design.
- b) De novo drug design: Receptor/enzyme-interaction and its analysis, Receptor/enzyme cavity size prediction, predicting the functional components of cavities, Fragment based drug design.
- c) Homology modeling and generation of 3D-structure of protein.
- Pharmacophore Mapping and Virtual Screening Concept of pharmacophore, pharmacophore mapping, identification of Pharmacophore features and Pharmacophore modeling; Conformational search used in pharmacophore mapping.

In Silico Drug Design and Virtual Screening Techniques Similarity based methods and Pharmacophore based screening, structure based In-silico virtual screening protocols.

- 1. Computational and structural approaches to drug discovery, Robert M Stroud and Janet. F Moore, RCS Publishers.
- 2. Introduction to Quantitative Drug Design by Y.C. Martin, CRC Press, Taylor & Francis group..
- Drug Design by Ariens Volume 1 to 10, Academic Press, 1975, Elsevier Publishers.
- 4. Principles of Drug Design by Smith and Williams, CRC Press, Taylor & Francis.
- 5. The Organic Chemistry of the Drug Design and Drug action by Richard B. Silverman, Elsevier Publishers.
- 6. Medicinal Chemistry by Burger, Wiley Publishing Co.

- 7. An Introduction to Medicinal Chemistry -Graham L. Patrick, Oxford University Press.
- 8. Wilson and Gisvold's Text book of Organic Medicinal and Pharmaceutical Chemistry, Ippincott Williams & Wilkins.
- 9. Comprehensive Medicinal Chemistry Corwin and Hansch, Pergamon Publishers.
- 10. Computational and structural approaches to drug design edited by Robert M Stroud and Janet. F Moore

PHARMACEUTICAL PROCESS CHEMISTRY (MPC 204T)

Scope

Process chemistry is often described as scale up reactions, taking them from small quantities created in the research lab to the larger quantities that are needed for further testing and then to even larger quantities required for commercial production. The goal of a process chemist is to develop synthetic routes that are safe, cost-effective, environmentally friendly, and efficient. The subject is designed to impart knowledge on the development and optimization of a synthetic route/s and the pilot plant procedure for the manufacture of Active Pharmaceutical Ingredients (APIs) and new chemical entities (NCEs) for the drug development phase.

Objectives

At completion of this course it is expected that students will be able to understand

☐ The strategies of scale up process of apis and intermediates
☐ The various unit operations and various reactions in process chemistry

THEORY 60 Hrs

1. Process chemistry Introduction, Synthetic strategy

12 Hrs

Stages of scale up process: Bench, pilot and large scale process. In-process control and validation of large scale process.

In-process control and validation of large scale proces

Case studies of some scale up process of APIs.

Impurities in API, types and their sources including genotoxic impurities

2 Unit operations

12

- a) Extraction: Liquid equilibria, extraction with reflux, Hrs extraction with agitation, counter current extraction.
- b) Filtration: Theory of filtration, pressure and vacuum filtration, centrifugal filtration,
- c) Distillation: azeotropic and steam distillation
- d) Evaporation: Types of evaporators, factors affecting evaporation.
- e) Crystallization: Crystallization from aqueous, nonaqueous solutions factors affecting crystallization, nucleation. Principle and general methods of Preparation of polymorphs, hydrates, solvates and amorphous APIs.

3	Unit Pra	Nitration: Nitrating agents, Aromatic nitration, kinetics and mechanism of aromatic nitration, process equipment for technical nitration, mixed acid for nitration, Halogenation: Kinetics of halogenations, types of halogenations, catalytic halogenations. Case study on industrial halogenation process.	12 Hrs
	c)	Oxidation: Introduction, types of oxidative reactions, Liquid phase oxidation with oxidizing agents. Nonmetallic Oxidizing agents such as H_2O_2 , sodium hypochlorite, Oxygen gas, ozonolysis.	
4	Unit Pra	ocesses - II Reduction: Catalytic hydrogenation, Heterogeneous and homogeneous catalyst; Hydrogen transfer reactions, Metal hydrides. Case study on industrial reduction process.	12 Hrs
	b)	Fermentation: Aerobic and anaerobic fermentation. Production of i. Antibiotics; Penicillin and Streptomycin, ii. Vitamins: B2 and B12 iii. Statins: Lovastatin, Simvastatin Reaction progress kinetic analysis i. Streamlining reaction steps, route selection, ii. Characteristics of expedient routes, characteristics of cost-effective routes, reagent selection, families of reagents useful for scale-up.	
5	Industri a) b) c)	MSDS (Material Safety Data Sheet), hazard labels of chemicals and Personal Protection Equipment (PPE) Fire hazards, types of fire & fire extinguishers Occupational Health & Safety Assessment Series 1800 (OHSAS-1800) and ISO-14001(Environmental Management System), Effluents and its management	12 Hrs

- 1. Process Chemistry in the Pharmaceutical Industry: Challenges in an Ever-Changing Climate-An Overview; K. Gadamasetti, CRC Press.
- 2. Pharmaceutical Manufacturing Encyclopedia, 3rd edition, Volume 2.
- 3. Medicinal Chemistry by Burger, 6th edition, Volume 1-8.
- 4. W.L. McCabe, J.C Smith, Peter Harriott. Unit operations of chemical engineering, 7th edition, McGraw Hill
- 5. Polymorphism in Pharmaceutical Solids .Dekker Series Volume 95 Ed: H G Brittain (1999)
- 6. Regina M. Murphy: Introduction to Chemical Processes: Principles, Analysis, Synthesis
- 7. Peter J. Harrington: Pharmaceutical Process Chemistry for Synthesis: Rethinking the Routes to Scale-Up
- 8. P.H.Groggins: Unit processes in organic synthesis (MGH)
- 9. F.A.Henglein: Chemical Technology (Pergamon)
- 10. M. Gopal: Dryden's Outlines of Chemical Technology, WEP East-West Press
- 11. Clausen, Mattson: Principle of Industrial Chemistry, Wiley Publishing Co.,
- 12. Lowenheim & M.K. Moran: Industrial Chemicals
- 13. S.D. Shukla & G.N. Pandey: A text book of Chemical Technology Vol. II, Vikas Publishing House
- 14. J.K. Stille: Industrial Organic Chemistry (PH)
- 15. Shreve: Chemical Process. Mc Grawhill.
- 16. B.K.Sharma: Industrial Chemistry, Goel Publishing House
- 17. ICH Guidelines
- 18. United States Food and Drug Administration official website www.fda.gov

PHARMACEUTICAL CHEMISTRY PRACTICALS – II (MPC 205P)

- 1. Synthesis of organic compounds by adapting different approaches involving (3 experiments)
 - a) Oxidation
 - b) Reduction/hydrogenation
 - c) Nitration
- Comparative study of synthesis of APIs/intermediates by different synthetic routes (2 experiments)
- 3. Assignments on regulatory requirements in API (2 experiments)
- 4. Comparison of absorption spectra by UV and Wood ward Fieser rule
- 5. Interpretation of organic compounds by FT-IR
- 6. Interpretation of organic compounds by NMR
- 7. Interpretation of organic compounds by MS
- 8. Determination of purity by DSC in pharmaceuticals
- Identification of organic compounds using FT-IR, NMR, CNMR and Mass spectra
- 10. To carry out the preparation of following organic compounds
- 11. Preparation of 4-chlorobenzhydrylpiperazine. (an intermediate for cetirizine HCl).
- 12. Preparation of 4-iodotolene from p-toluidine.
- 13. NaBH₄ reduction of vanillin to vanilly alcohol
- 14. Preparation of umbelliferone by Pechhman reaction
- 15. Preparation of triphenyl imidazole
- 16. To perform the Microwave irradiated reactions of synthetic importance (Any two)
- 17. Determination of log P, MR, hydrogen bond donors and acceptors of selected drugs using softwares
- 18. Calculation of ADMET properties of drug molecules and its analysis using softwares
 - Pharmacophore modeling
- 19. 2D-QSAR based experiments
- 20. 3D-QSAR based experiments
- 21. Docking study based experiment
- 22. Virtual screening based experiment

PHARMACOLOGY (MPL)

MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES (MPL 101T)

Scope

This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are NMR, Mass spectrometer, IR, HPLC, GC etc.

01	
()h	ectives
$O_{\mathcal{O}}$	CCHVCS

After completion of course student is able to know about,

- Chemicals and Excipients
- ☐ The analysis of various drugs in single and combination dosage forms
- ☐ Theoretical and practical skills of the instruments

THEORY 60 Hrs

- 1. UV-Visible spectroscopy: Introduction, Theory, Laws, Instrumentation associated with UV-Visible spectroscopy, Choice of solvents and solvent effect and Applications of UV-Visible spectroscopy, Difference/ Derivative spectroscopy. IR spectroscopy: Theory, Modes of Molecular vibrations, Sample handling, Instrumentation of Dispersive and Fourier Transform IR Spectrometer, Factors affecting vibrational frequencies and Applications of IR spectroscopy, Data Interpretation.
 - Spectroflourimetry: Theory of Fluorescence, Factors affecting fluorescence (Characterestics of drugs that can be analysed by flourimetry), Quenchers, Instrumentation and Applications of fluorescence spectrophotometer.
 - Flame emission spectroscopy and Atomic absorption spectroscopy: Principle, Instrumentation, Interferences and Applications.

Hrs

2 NMR spectroscopy: Quantum numbers and their role in NMR, Principle, Instrumentation, Solvent requirement in NMR, Relaxation process, NMR signals in various compounds, Chemical shift, Factors influencing chemical shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR and 13C NMR. Applications of NMR spectroscopy.

- 3 Mass Spectroscopy: Principle, Theory, Instrumentation of Mass Spectroscopy, Different types of ionization like electron impact. Hrs chemical, field, FAB and MALDI, APCI, ESI, APPI Analyzers of Quadrupole and Time of Flight, Mass fragmentation and its rules, Meta stable ions, Isotopic peaks and Applications of Mass spectroscopy. 4 Principle. 10 Chromatography: apparatus. instrumentation. chromatographic parameters, factors affecting resolution, isolation Hrs
- of drug from excipients, data interpretation and applications of the following:
 - Thin Laver chromatography i)
 - k) High Performance Thin Laver Chromatography
 - I) Ion exchange chromatography
 - m) Column chromatography
 - Gas chromatography n)
 - High Performance Liquid chromatography O)
 - Ultra High Performance Liquid chromatography g)
 - Affinity chromatography a)
 - r) Gel Chromatography
- Electrophoresis: Principle, Instrumentation, Working conditions, 5 Hrs factors affecting separation and applications of the following:
 - a) Paper electrophoresis b) Gel electrophoresis c) Capillarv electrophoresis d) Zone electrophoresis e) Moving boundary electrophoresis f) Iso electric focusing X ray Crystallography: Production of X rays, Different X ray methods, Bragg's law, Rotating crystal technique, X ray powder technique. Types of crystals and applications of X-ray diffraction.
- Potentiometry: Principle, working, Ion selective Electrodes and 6 Application of potentiometry. Techniques: Principle, thermal transitions and

Instrumentation (Heat flux and power-compensation and designs), Modulated DSC, Hyper DSC, experimental parameters (sample preparation, experimental conditions, calibration, heating and cooling rates, resolution, source of errors) and their influence, advantage and disadvantages, pharmaceutical applications. Differential Thermal Analysis (DTA): Principle, instrumentation and advantage and disadvantages, pharmaceutical applications, derivative differential thermal analysis (DDTA). TGA: Principle, instrumentation. factors affecting results, advantage and disadvantages, pharmaceutical applications.

10 Hrs

- 1. Spectrometric Identification of Organic compounds Robert M Silverstein, Sixth edition. John Wiley & Sons. 2004.
- 2. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman, 5th edition, Eastern press, Bangalore, 1998.

 3. Instrumental methods of analysis – Willards, 7th edition, CBS publishers.
- 4. Practical Pharmaceutical Chemistry Beckett and Stenlake, Vol II, 4th edition, CBS Publishers, New Delhi, 1997.
- 5. Organic Spectroscopy William Kemp, 3rd edition, ELBS, 1991.
- 6. Quantitative Analysis of Drugs in Pharmaceutical formulation P D Sethi, 3rd Edition, CBS Publishers, New Delhi, 1997.
- 7. Pharmaceutical Analysis Modern Methods Part B I W Munson, Vol. 11, Marcel. Dekker Series
- 8. Spectroscopy of Organic Compounds, 2nd edn., P.S/Kalsi, Wiley estern Ltd.. Delhi.
- 9. Textbook of Pharmaceutical Analysis, KA.Connors, 3rd Edition, John Wiley & Sons. 1982.

ADVANCED PHARMACOLOGY - I (MPL 102T)

Scope

The subject is designed to strengthen the basic knowledge in the field of pharmacology and to impart recent advances in the drugs used for the treatment of various diseases. In addition, this subject helps the students to understand the concepts of drug action and mechanisms involved

Objectives

Upon completion of the course the student shall be able to :

Discuss the pathophysiology and pharmacotherapy of certain diseases

Explain the mechanism of drug actions at cellular and molecular level

Understand the adverse effects, contraindications and clinical uses of drugs used in treatment of diseases

THEORY 60 Hrs

1. General

Pharmacology 12

- a. Pharmacokinetics: The dynamics of drug absorption, Hrs distribution, biotransformation and elimination. Concepts of linear and non-linear compartment models. Significance of Protein binding.
- b. Pharmacodynamics: Mechanism of drug action and the relationship between drug concentration and effect. Receptors, structural and functional families of receptors, quantitation of drug receptors interaction and elicited effects.
- 2 Neurotransmission

12 Hrs

- a. General aspects and steps involved in neurotransmission.
- b. Neurohumoral transmission in autonomic nervous system (Detailed study about neurotransmitters- Adrenaline and Acetyl choline).
- c. Neurohumoral transmission in central nervous system (Detailed study about neurotransmitters- histamine, serotonin, dopamine, GABA, glutamate and glycine].
- d. Non adrenergic non cholinergic transmission (NANC). Cotransmission

Systemic Pharmacology

A detailed study on pathophysiology of diseases, mechanism of action, pharmacology and toxicology of existing as well as novel drugs used in the following systems

Autonomic Pharmacology

 $\label{eq:parasympathomimetics} \textbf{ and lytics, sympathomimetics and lytics, agents affecting}$

neuromuscular junction

- 3 Central nervous system Pharmacology
 General and local anesthetics
 Sedatives and hypnotics, drugs used to treat anxiety.
 Depression, psychosis, mania, epilepsy, neurodegenerative diseases.
 Narcotic and non-narcotic analgesics.
- 4 Cardiovascular Pharmacology
 Diuretics, antihypertensives, antiischemics, anti- arrhythmics, Hrs
 drugs for heart failure and hyperlipidemia.
 Hematinics, coagulants, anticoagulants, fibrinolytics and antiplatelet drugs
- 5 Autocoid Pharmacology 12
 The physiological and pathological role of Histamine, Serotonin, Hrs
 Kinins Prostaglandins Opioid autocoids.
 Pharmacology of antihistamines, 5HT antagonists.

- 1. The Pharmacological Basis of Therapeutics, Goodman and Gillman's
- 2. Principles of Pharmacology. The Pathophysiologic basis of drug Therapy by David E Golan, Armen H, Tashjian Jr, Ehrin J, Armstrong, April W, Armstrong, Wolters, Kluwer-Lippincott Williams & Wilkins Publishers.
- 3. Basic and Clinical Pharmacology by B.G Katzung
- 4. Hand book of Clinical Pharmacokinetics by Gibaldi and Prescott.
- Applied biopharmaceutics and Pharmacokinetics by Leon Shargel and Andrew B.C.Yu.
- 6. Graham Smith. Oxford textbook of Clinical Pharmacology.
- 7. Avery Drug Treatment
- 8. Dipiro Pharmacology, Pathophysiological approach.
- 9. Green Pathophysiology for Pharmacists.

- 10. Robbins & Cortan Pathologic Basis of Disease, 9th Ed. (Robbins Pathology)
- 11. A Complete Textbook of Medical Pharmacology by Dr. S.K Srivastava published by APC Avichal Publishing Company
- 12. KD. Tripathi. Essentials of Medical Pharmacology.
- 13. Modern Pharmacology with Clinical Applications, Craig Charles R. & Stitzel Robert E., Lippincott Publishers.
- 14. Clinical Pharmacokinetics & Pharmacodynamics: Concepts and Applications Malcolm Rowland and Thomas N.Tozer, Wolters Kluwer, Lippincott Williams & Wilkins Publishers.
- 15. Applied biopharmaceutics and Pharmacokinetics, Pharmacodynamics and Drug metabolism for industrial scientists.
- 16. Modern Pharmacology, Craig CR. & Stitzel RE, Little Brown & Company.

PHARMACOLOGICAL AND TOXICOLOGICAL SCREENING METHODS - I (MPL 103T)

Scope

This subject is designed to impart the knowledge on preclinical evaluation of drugs and recent experimental techniques in the drug discovery and development. The subject content helps the student to understand the maintenance of laboratory animals as per the guidelines, basic knowledge of various in-vitro and in-vivo preclinical evaluation processes

0		
()	hı	ectives

•	completion of the course the student shall be able to, Appraise the regulations and ethical requirement for the usage of experimental animals.
1	Describe the various animals used in the drug discovery process and good laboratory practices in maintenance and handling of experimental animals
	 Describe the various newer screening methods involved in the drug discovery process Appreciate and correlate the preclinical data to humans
TH	EORY 60 Hrs
1.	Laboratory Animals Common laboratory animals: Description, handling and Hrs applications of different species and strains of animals.
	Transgenic animals: Production, maintenance and applications Anaesthesia and euthanasia of experimental animals. Maintenance and breeding of laboratory animals. CPCSEA guidelines to conduct experiments on animals
	Good laboratory practice. Bioassay-Principle, scope and limitations and methods
2	Preclinical screening of new substances for the 12 pharmacological activity using in vivo, in vitro, and other Hrs

General principles of preclinical screening. CNS Pharmacology: behavioral and muscle co ordination. CNS stimulants and

possible animal alternative models.

depressants, anxiolytics, anti-psychotics, anti epileptics and nootropics. Drugs for neurodegenerative diseases like Parkinsonism, Alzheimers and multiple sclerosis. Drugs acting on Autonomic Nervous System.

- 3 Preclinical screening of new substances for the 12 pharmacological activity using in vivo, in vitro, and other Hrs possible animal alternative models.
 - Respiratory Pharmacology: anti-asthmatics, drugs for COPD and anti allergics. Reproductive Pharmacology: Aphrodisiacs and antifertility agents Analgesics, antiinflammatory and antipyretic agents. Gastrointestinal drugs: anti ulcer, anti-emetic, anti-diarrheal and laxatives.
- 4 Preclinical screening of new substances for the 12 pharmacological activity using in vivo, in vitro, and other Hrs possible animal alternative models.
 - Cardiovascular Pharmacology: antihypertensives, antiarrythmics, antianginal, antiatherosclerotic agents and diuretics. Drugs for metabolic disorders like anti-diabetic, antidyslipidemic agents. Anti cancer agents. Hepatoprotective screening methods.
- 5 Preclinical screening of new substances for the 12 pharmacological activity using in vivo, in vitro, and other Hrs possible animal alternative models.

limmunomodulators, Immunosuppressants and immunostimulants

General principles of immunoassay: theoretical basis and optimization of immunoassay, heterogeneous and homogenous immunoassay systems. Immunoassay methods evaluation; protocol outline, objectives and preparation. Immunoassay for digoxin and insulin

Limitations of animal experimentation and alternate animal experiments.

Extrapolation of in vitro data to preclinical and preclinical to humans

- 1. Biological standardization by I.H. Burn D.I. Finney and I.G. Goodwin
- 2. Screening methods in Pharmacology by Robert Turner. A
- 3. Evaluation of drugs activities by Laurence and Bachrach
- 4. Methods in Pharmacology by Arnold Schwartz.
- 5. Fundamentals of experimental Pharmacology by M.N.Ghosh
- 6. Pharmacological experiment on intact preparations by Churchill Livingstone
- 7. Drug discovery and Evaluation by Vogel H.G.
- 8. Experimental Pharmacology by R.K.Goyal.
- 9. Preclinical evaluation of new drugs by S.K. Guta
- 10. Handbook of Experimental Pharmacology, SK.Kulkarni
- 11. Practical Pharmacology and Clinical Pharmacy, SK.Kulkarni, 3rd Edition.
- 12. David R.Gross. Animal Models in Cardiovascular Research, 2nd Edition, Kluwer Academic Publishers, London, UK.
- 13. Screening Methods in Pharmacology, Robert A. Turner.
- 14. Rodents for Pharmacological Experiments, Dr. Tapan Kumar chatterjee.
- 15. Practical Manual of Experimental and Clinical Pharmacology by Bikash Medhi (Author), Ajay Prakash (Author)

CELLULAR AND MOLECULAR PHARMACOLOGY (MPL 104T)

Scope:

The subject imparts a fundamental knowledge on the structure and functions of cellular components and help to understand the interaction of these components with drugs. This information will further help the student to apply the knowledge in drug discovery process.

o	
()hi	ectives:
ΟUJ	ectives:

Upon completion of the course, the student shall be able to. Explain the receptor signal transduction processes. Explain the molecular pathways affected by drugs. Appreciate the applicability of molecular pharmacology and biomarkers in drug discovery process. Demonstrate molecular biology techniques as applicable for pharmacology THEORY 60 Hrs 12 1. Cell biology Structure and functions of cell and its organelles Hrs Genome organization. Gene expression and its regulation, importance of siRNA and micro RNA, gene mapping and gene sequencing Cell cycles and its regulation. Cell death- events, regulators, intrinsic and extrinsic pathways of apoptosis. Necrosis and autophagy. 2 Cell signaling 12 Intercellular and intracellular signaling pathways. Hrs Classification of receptor family and molecular structure ligand gated ion channels: G-protein coupled receptors, tyrosine kinase receptors and nuclear receptors. Secondary messengers: cyclic AMP, cyclic GMP, calcium ion, inositol 1,4,5-trisphosphate, (IP3), NO, and diacylglycerol. Detailed study of following intracellular signaling pathways: cyclic AMP signaling pathway, mitogen-activated protein kinase (MAPK) signaling. Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway.

Principles and applications of genomic and proteomic tools 12 DNA electrophoresis, PCR (reverse transcription and real time), Hrs Gene sequencing, micro array technique, SDS page, ELISA and western blotting, Recombinant DNA technology and gene therapy

Basic principles of recombinant DNA technology-Restriction

enzymes, various types of vectors. Applications of recombinant DNA technology.

Gene therapy- Various types of gene transfer techniques, clinical applications and recent advances in gene therapy.

4 Pharmacogenomics Gene mapping and clo

Gene mapping and cloning of disease gene.

Genetic variation and its role in health/ pharmacology Polymorphisms affecting drug metabolism

Genetic variation in drug transporters

Genetic variation in G protein coupled receptors

Applications of proteomics science: Genomics, proteomics,

metabolomics, functionomics, nutrigenomics

Immunotherapeutics

Types of immunotherapeutics, humanisation antibody therapy, Immunotherapeutics in clinical practice

5 a. Cell culture techniques
Basic equipments used in cell culture lab. Cell culture media,
various types of cell culture, general procedure for cell cultures;
isolation of cells, subculture, cryopreservation, characterization of
cells and their application.

Principles and applications of cell viability assays, glucose uptake assay, Calcium influx assays

Principles and applications of flow cytometry

b. Biosimilars

REFERENCES:

- 1. The Cell, A Molecular Approach. Geoffrey M Cooper.
- 2. Pharmacogenomics: The Search for Individualized Therapies. Edited by J. Licinio and M -L. Wong
- 3. Handbook of Cell Signaling (Second Edition) Edited by Ralph A. et.al
- 4. Molecular Pharmacology: From DNA to Drug Discovery. John Dickenson et.al
- 5. Basic Cell Culture protocols by Cheril D.Helgason and Cindy L.Miller
- 6. Basic Cell Culture (Practical Approach) by J. M. Davis (Editor)
- 7. Animal Cell Culture: A Practical Approach by John R. Masters (Editor)
- 8. Current porotocols in molecular biology vol I to VI edited by Frederick M.Ausuvel et la.

12 Hrs

12

Hrs

PHARMACOLOGY PRACTICAL - I (MPL 105P)

- 1. Analysis of pharmacopoeial compounds and their formulations by UV Vis spectrophotometer
- 2. Simultaneous estimation of multi component containing formulations by UV spectrophotometry
- 3. Experiments based on HPLC
- 4. Experiments based on Gas Chromatography
- 5. Estimation of riboflavin/quinine sulphate by fluorimetry
- 6. Estimation of sodium/potassium by flame photometry

Handling of laboratory animals.

- 1. Various routes of drug administration.
- Techniques of blood sampling, anesthesia and euthanasia of experimental animals.
- 3. Functional observation battery tests (modified Irwin test)
- 4. Evaluation of CNS stimulant, depressant, anxiogenics and anxiolytic, anticonvulsant activity.
- 5. Evaluation of analgesic, anti-inflammatory, local anesthetic, mydriatic and miotic activity.
- 6. Evaluation of diuretic activity.
- 7. Evaluation of antiulcer activity by pylorus ligation method.
- 8. Oral glucose tolerance test.
- 9. Isolation and identification of DNA from various sources (Bacteria, Cauliflower, onion, Goat liver).
- 10. Isolation of RNA from yeast
- 11. Estimation of proteins by Braford/Lowry's in biological samples.
- 12. Estimation of RNA/DNA by UV Spectroscopy
- 13. Gene amplification by PCR.
- 14. Protein quantification Western Blotting.
- 15. Enzyme based in-vitro assays (MPO, AChEs, α amylase, α glucosidase).
- 16. Cell viability assays (MTT/Trypan blue/SRB).
- 17. DNA fragmentation assay by agarose gel electrophoresis.
- 18. DNA damage study by Comet assay.
- 19. Apoptosis determination by fluorescent imaging studies.
- 20. Pharmacokinetic studies and data analysis of drugs given by different routes of administration using softwares
- 21. Enzyme inhibition and induction activity
- 22. Extraction of drug from various biological samples and estimation of drugs in biological fluids using different analytical techniques (UV)
- 23. Extraction of drug from various biological samples and estimation of drugs in biological fluids using different analytical techniques (HPLC)

- 1. CPCSEA, OECD, ICH, USFDA, Schedule Y, EPA guidelines,
- 2. Fundamentals of experimental Pharmacology by M.N.Ghosh
- 3. Handbook of Experimental Pharmacology by S.K. Kulkarni.
- 4. Drug discovery and Evaluation by Vogel H.G.
- 5. Spectrometric Identification of Organic compounds Robert M Silverstein,
- 6. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman,
- 7. Vogel's Text book of quantitative chemical analysis Jeffery, Basset, Mendham, Denney,
- 8. Basic Cell Culture protocols by Cheril D. Helgason and Cindy L.Mille
- 9. Basic Cell Culture (Practical Approach) by J. M. Davis (Editor)
- 10. Animal Cell Culture: A Practical Approach by John R. Masters (Editor)
- 11. Practical Manual of Experimental and Clinical Pharmacology by Bikash Medhi(Author), Ajay Prakash (Author) Jaypee brothers' medical publishers Pvt. Ltd

ADVANCED PHARMACOLOGY - II (MPL 201T)

Scope

The subject is designed to strengthen the basic knowledge in the field of pharmacology and to impart recent advances in the drugs used for the treatment of various diseases. In addition, the subject helps the student to understand the concepts of drug action and mechanism involved

Ob	jectives	
·	completion of the course the student shall be able to: Explain the mechanism of drug actions at cellular and molecular Discuss the Pathophysiology and pharmacotherapy of certain di Understand the adverse effects, contraindications and clinical udrugs used in treatment of diseases	seases
TH	EORY 60	Hrs
1.	Endocrine Pharmacology Molecular and cellular mechanism of action of hormones such as growth hormone, prolactin, thyroid, insulin and sex hormones Anti-thyroid drugs, Oral hypoglycemic agents, Oral contraceptives, Corticosteroids. Drugs affecting calcium regulation	12 Hrs
2	Chemotherapy Cellular and molecular mechanism of actions and resistance of antimicrobial agents such as ß-lactams, aminoglycosides, quinolones, Macrolide antibiotics. Antifungal, antiviral, and anti-TB drugs.	12 Hrs
3	Chemotherapy Drugs used in Protozoal Infections Drugs used in the treatment of Helminthiasis Chemotherapy of cancer Immunopharmacology Cellular and biochemical mediators of inflammation and immune response. Allergic or hypersensitivity reactions. Pharmacotherapy of asthma and COPD	12 Hrs

Immunosuppressants and Immunostimulants

4 GIT Pharmacology
Antiulcer drugs, Prokinetics, antiemetics, anti-diarrheals and Hrs drugs for constipation
and irritable bowel syndrome.
Chronopharmacology
Biological and circadian rhythms, applications of chronotherapy in

Free radicals Pharmacology
Generation of free radicals, role of free radicals in etiopathology of various diseases
such as diabetes, neurodegenerative diseases and cancer.
Protective activity of certain important antioxidant
Recent Advances in Treatment:

cardiovascular disease, diabetes, asthma and peptic ulcer

Alzheimer's disease, Parkinson's disease, Cancer, Diabetes mellitus

REFERENCES

various diseases like

- 1. The Pharmacological basis of therapeutics- Goodman and Gill man's
- 2. Principles of Pharmacology. The Pathophysiologic basis of drug therapy by David E Golan et al.
- 3. Basic and Clinical Pharmacology by B.G -Katzung
- 4. Pharmacology by H.P. Rang and M.M. Dale.
- 5. Hand book of Clinical Pharmacokinetics by Gibaldi and Prescott.
- 6. Text book of Therapeutics, drug and disease management by E T. Herfindal and Gourley.
- Applied biopharmaceutics and Pharmacokinetics by Leon Shargel and Andrew B.C.Yu.
- 8. Handbook of Essential Pharmacokinetics, Pharmacodynamics and Drug Metabolism for Industrial Scientists
- 9. Robbins & Cortan Pathologic Basis of Disease, 9th Ed. (Robbins Pathology)
- 10. A Complete Textbook of Medical Pharmacology by Dr. S.K Srivastava published by APC Avichal Publishing Company.
- 11. KD.Tripathi. Essentials of Medical Pharmacology
- 12. Principles of Pharmacology. The Pathophysiologic basis of drug Therapy by David E Golan, Armen H, Tashjian Jr, Ehrin J, Armstrong, April W, Armstrong, Wolters, Kluwer-Lippincott Williams & Wilkins Publishers

PHARMACOLOGICAL AND TOXICOLOGICAL SCREENING METHODS-II (MPL 202T)

Scope:

This subject imparts knowledge on the preclinical safety and toxicological evaluation of drug & new chemical entity. This knowledge will make the student competent in regulatory toxicological evaluation.

comp	petent in regulatory toxicological evaluation.	
Obj	ectives:	
Upon	completion of the course, the student shall be able to, Explain the various types of toxicity studies.	
[Appreciate the importance of ethical and regulatory requireme toxicity studies.	nts for
[Demonstrate the practical skills required to conduct the pre toxicity studies. 	clinical
TH	EORY	0 Hrs
1.	Basic definition and types of toxicology (general, mechanistic, regulatory and descriptive)	12 Hrs
	Regulatory guidelines for conducting toxicity studies OECD, ICH, EPA and Schedule Y	
	OECD principles of Good laboratory practice (GLP) History, concept and its importance in drug development	
2	Acute, sub-acute and chronic- oral, dermal and inhalational studies as per OECD guidelines. Acute eye irritation, skin sensitization, dermal irritation & dermal toxicity studies.	12 Hrs
	Test item characterization- importance and methods in regulatory toxicology studies	
3	Reproductive toxicology studies, Male reproductive toxicity studies, female reproductive studies (segment I and segment III),	
	teratogenecity studies (segment II) Genotoxicity studies (Ames Test, in vitro and in vivo Micronucleus	
	and Chromosomal aberrations studies) In vivo carcinogenicity studies	
4	IND enabling studies (IND studies)- Definition of IND, importance of IND, industry perspective, list of studies needed for IND submission.	12 Hrs

Safety pharmacology studies- origin, concepts and importance of safety pharmacology.

Tier1- CVS, CNS and respiratory safety pharmacology, HERG assay. Tier2- GI, renal and other studies

5 Toxicokinetics- Toxicokinetic evaluation in preclinical studies, 12 saturation kinetics Importance and applications of toxicokinetic Hrs studies.

Alternative methods to animal toxicity testing.

- Hand book on GLP, Quality practices for regulated non-clinical research and development (http://www.who.int/tdr/publications/documents/glphandbook.pdf).
- Schedule Y Guideline: drugs and cosmetics (second amendment) rules, 2005, ministry of health and family welfare (department of health) New Delhi
- 3. Drugs from discovery to approval by Rick NG.
- 4. Animal Models in Toxicology, 3rd Edition, Lower and Bryan
- 5. OECD test guidelines.
- 6. Principles of toxicology by Karen E. Stine, Thomas M. Brown.
- 7. Guidance for Industry M3(R2) Nonclinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorization for Pharmaceuticals (http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinform ation/guidances/ucm073246.pdf)

PRINCIPLES OF DRUG DISCOVERY (MPL 203T)

Scop	oe:
------	-----

The subject imparts basic knowledge of drug discovery process. This

information will make the student competent in drug discovery process	
Objectives:	
 Upon completion of the course, the student shall be able to, Explain the various stages of drug discovery. Appreciate the importance of the role of genomics, proteomics bioinformatics in drug discovery Explain various targets for drug discovery. Explain various lead seeking method and lead optimization Appreciate the importance of the role of computer aided drug design drug discovery 	
THEORY 1. An overview of modern drug discovery process: Target 1 identification, target validation, lead identification and lead H Optimization. Economics of drug discovery. Target Discovery and validation-Role of Genomics, Proteomics and Bioinformatics. Role of Nucleic acid microarrays, Protein microarrays, Antisense technologies, siRNAs, antisense oligonucleotides, Zinc finger proteins. Role of transgenic animals in target validation.	2
2 Lead Identification- combinatorial chemistry & high throughput 1. screening, in silico lead discovery techniques, Assay development H for hit identification. Protein structure Levels of protein structure, Domains, motifs, and folds in protein structure. Computational prediction of protein structure: Threading and homology modeling methods. Application of NMR and X-ray crystallography in protein structure prediction	_
3 Rational Drug Design	2 rs

Drug Design, Rational Drug Design Methods: Structure and

Pharmacophore based approaches

Virtual Screening techniques: Drug likeness screening, Concept of pharmacophore mapping and pharmacophore based Screening,

- 4 Molecular docking: Rigid docking, flexible docking, manual 12 docking; Docking based screening. De novo drug design.

 Quantitative analysis of Structure Activity Relationship History and development of QSAR, SAR versus QSAR, Physicochemical parameters, Hansch analysis, Fee Wilson analysis and relationship between them.
- SQSAR Statistical methods regression analysis, partial least square analysis (PLS) and other multivariate statistical methods. 3D-QSAR approaches like COMFA and COMSIA Prodrug design-Basic concept, Prodrugs to improve patient acceptability, Drug solubility, Drug absorption and distribution, site specific drug delivery and sustained drug action. Rationale of prodrug design and practical consideration of prodrug design

- MouldySioud. Target Discovery and Validation Reviews and Protocols: Volume 2 Emerging Molecular Targetsand Treatment Options. 2007 Humana Press Inc.
- 2. Darryl León. Scott Markelln. Silico Technologies in Drug Target Identification and Validation. 2006 by Taylor and Francis Group. LLC.
- 3. Johanna K. DiStefano. Disease Gene Identification. Methods and Protocols. Springer New York Dordrecht Heidelberg London.
- 4. Hugo Kubiny. QSAR: Hansch Analysis and Related Approaches. Methods and Principles in Medicinal Chemistry. Publisher Wiley-VCH
- 5. Klaus Gubernator, Hans-Joachim Böhm. Structure-Based Ligand Design. Methods and Principles in Medicinal Chemistry. Publisher Wiley-VCH
- Abby L. Parrill. M. Rami Reddy. Rational Drug Design. Novel Methodology and Practical Applications. ACS Symposium Series; American Chemical Society: Washington, DC, 1999.
- 7. J. Rick Turner. New drug development design, methodology and, analysis. John Wiley & Sons, Inc., New Jersey.

CLINICAL RESEARCH AND PHARMACOVIGILANCE (MPL 204T)

Scope:

This subject will provide a value addition and current requirement for the students in clinical research and pharmacovigilance. It will teach the students on conceptualizing, designing, conducting, managing and reporting of clinical trials. This subject also focuses on global scenario of Pharmacovigilance in different methods that can be used to generate safety data. It will teach the students in developing drug safety data in Pre-clinical, Clinical phases of Drug development and post market surveillance.

Objectives:

3 ,	and
communication in Pharmacovigilance	
THEORY 60 Hr	s
1. Regulatory Perspectives of Clinical Trials: Origin and Principles of International Conference on Harmonization - Good Clinical Practice (ICH-GCP) guidelines Ethical Committee: Institutional Review Board, Ethical Guidelines for Biomedical Research and Human Participant- Schedule Y, ICMR Informed Consent Process: Structure and content of an Informed Consent Process Ethical principles governing informed consent process	_
2 Clinical Trials: Types and Design Experimental Study- RCT and Non RCT, Observation Study: Cohort, Case Control, Cross sectional Clinical Trial Study Team Roles and responsibilities of Clinical Trial Personnel: Investigator, Study Coordinator, Sponsor, Contract Research Organization and its management	_

- 3 Clinical Trial Documentation- Guidelines to the preparation of 12 documents, Preparation of protocol, Investigator Brochure, Case Hrs Report Forms, Clinical Study Report Clinical Trial Monitoring-Safety Monitoring in CT
 - Adverse Drug Reactions: Definition and types. Detection and reporting methods. Severity and seriousness assessment. Predictability and preventability assessment, Management of adverse drug reactions; Terminologies of ADR.
- 4 Basic aspects, terminologies and establishment of 12 pharmacovigilance Hrs History and progress of pharmacovigilance. Significance of safety monitoring. Pharmacovigilance in India and international aspects. WHO international drug monitoring programme. WHO Regulatory terminologies of ADR, evaluation of medication safety. Establishing pharmacovigilance centres in Hospitals, Industry and National programmes related to pharmacovigilance. Roles and responsibilities in Pharmacovigilance
- 5 Methods. ADR reporting tools in 12 and used Pharmacovigilance Hrs International classification of diseases. International Nonproprietary names for drugs, Passive and Active surveillance, Comparative observational studies, Targeted clinical investigations and Vaccine safety surveillance. Spontaneous reporting system and Reporting to regulatory authorities, Guidelines for ADRs reporting. Argus, Aris G Pharmacovigilance, VigiFlow, Statistical methods for evaluating medication safety data.
- 6 Pharmacoepidemiology, pharmacoeconomics, safety 12 pharmacology Hrs

- Central Drugs Standard Control Organization- Good Clinical Practices, Guidelines for Clinical Trials on Pharmaceutical Products in India. New Delhi: Ministry of Health; 2001.
- International Conference on Harmonization of Technical requirements for registration of Pharmaceuticals for human use. ICH Harmonized Tripartite Guideline. Guideline for Good Clinical Practice.E6; May 1996.

- 3. Ethical Guidelines for Biomedical Research on Human Subjects 2000. Indian Council of Medical Research, New Delhi.
- 4. Textbook of Clinical Trials edited by David Machin, Simon Day and Sylvan Green, March 2005, John Wiley and Sons.
- 5. Clinical Data Management edited by R K Rondels, S A Varley, C F Webbs. Second Edition, Jan 2000, Wiley Publications.
- 6. Handbook of clinical Research. Julia Lloyd and Ann Raven Ed. Churchill Livingstone.
- 7. Principles of Clinical Research edited by Giovanna di Ignazio, Di Giovanna and Haynes.

PHARMACOLOGY PRACTICAL - II

(MPL 205P)

- 1. To record the DRC of agonist using suitable isolated tissues preparation.
- 2. To study the effects of antagonist/potentiating agents on DRC of agonist using suitable isolated tissue preparation.
- 3. To determine to the strength of unknown sample by matching bioassay by using suitable tissue preparation.
- 4. To determine to the strength of unknown sample by interpolation bioassay by using suitable tissue preparation
- 5. To determine to the strength of unknown sample by bracketing bioassay by using suitable tissue preparation
- 6. To determine to the strength of unknown sample by multiple point bioassay by using suitable tissue preparation.
- 7. Estimation of PA₂ values of various antagonists using suitable isolated tissue preparations.
- 8. To study the effects of various drugs on isolated heart preparations
- 9. Recording of rat BP, heart rate and ECG.
- 10. Recording of rat ECG
- 11. Drug absorption studies by averted rat ileum preparation.
- 12. Acute oral toxicity studies as per OECD guidelines.
- 13. Acute dermal toxicity studies as per OECD guidelines.
- 14. Repeated dose toxicity studies- Serum biochemical, haematological, urine analysis, functional observation tests and histological studies.
- 15. Drug mutagenicity study using mice bone-marrow chromosomal aberration test.
- 16. Protocol design for clinical trial.(3 Nos.)
- 17. Design of ADR monitoring protocol.
- 18. In-silico docking studies. (2 Nos.)
- 19. In-silico pharmacophore based screening.
- 20. In-silico QSAR studies.
- 21. ADR reporting

- 1. Fundamentals of experimental Pharmacology-by M.N.Ghosh
- 2. Hand book of Experimental Pharmacology-S.K.Kulakarni
- 3. Text book of in-vitro practical Pharmacology by Ian Kitchen
- 4. Bioassay Techniques for Drug Development by Atta-ur-Rahman, Iqbal choudhary and William Thomsen
- Applied biopharmaceutics and Pharmacokinetics by Leon Shargel and Andrew B.C.Yu.
- 6. Handbook of Essential Pharmacokinetics, Pharmacodynamics and Drug Metabolism for Industrial Scientists.

PHARMACOGNOSY (MPG)

MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES (MPG 101T)

Scope

This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are NMR, Mass spectrometer, IR, HPLC, GC etc.

~ 1			
()	nie	ctiv	IPC
\mathbf{C}	σ_{1}	Cu	<i>'</i> C S

After completion of course student is able to know,

- The analysis of various drugs in single and combination dosage forms
- Theoretical and practical skills of the instruments

THEORY 60 Hrs

- UV-Visible spectroscopy: Introduction, Theory, Laws, 12
 Instrumentation associated with UV-Visible spectroscopy, Choice of solvents and solvent effect and Applications of UV-Visible spectroscopy.
 - IR spectroscopy: Theory, Modes of Molecular vibrations, Sample handling, Instrumentation of Dispersive and Fourier Transform IR Spectrometer, Factors affecting vibrational frequencies and Applications of IR spectroscopy
 - Spectroflourimetry: Theory of Fluorescence, Factors affecting fluorescence, Quenchers, Instrumentation and Applications of fluorescence spectrophotometer.
 - Flame emission spectroscopy and Atomic absorption spectroscopy: Principle, Instrumentation, Interferences and Applications.
- 2 NMR spectroscopy: Quantum numbers and their role in NMR, 12 Principle, Instrumentation, Solvent requirement in NMR, Hrs Relaxation process, NMR signals in various compounds, Chemical shift, Factors influencing chemical shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR and 13C NMR. Applications of NMR spectroscopy.1

- 3 Mass Spectroscopy: Principle, Theory, Instrumentation of Mass 10 Spectroscopy, Different types of ionization like electron impact, Hrs chemical, field, FAB and MALDI, APCI, ESI, APPI Analyzers of Quadrupole and Time of Flight, Mass fragmentation and its rules, Meta stable ions, Isotopic peaks and Applications of Mass spectroscopy.
- 4 Chromatography: Principle, apparatus, instrumentation, 10 chromatographic parameters, factors affecting resolution, isolation Hrs of drug from excipients, data interpretation and applications of the following:
 - a) Thin Layer chromatography
 - b) High Performance Thin Layer Chromatography
 - c) Ion exchange chromatography
 - d) Column chromatography
 - e) Gas chromatography
 - f) High Performance Liquid chromatography
 - g) Ultra High Performance Liquid chromatography
 - h) Affinity chromatography
 - i) Gel Chromatography
- 5 Electrophoresis: Principle, Instrumentation, Working conditions, 10 factors affecting separation and applications of the following:
 - a) Paper electrophoresis
 - b) Gel electrophoresis
 - c) Capillary electrophoresis
 - d) Zone electrophoresis
 - e) Moving boundary electrophoresis
 - f) Iso electric focusing

X ray Crystallography: Production of X rays, Different X ray methods, Bragg's law, Rotating crystal technique, X ray powder technique, Types of crystals and applications of X-ray diffraction.

6 Potentiometry: Principle, working, Ion selective Electrodes and 10 Application of potentiometry.

Thermal Techniques: Principle, thermal transitions and Instrumentation (Heat flux and power-compensation and designs), Modulated DSC, Hyper DSC, experimental parameters (sample preparation, experimental conditions, calibration, heating and

cooling rates, resolution, source of errors) and their influence. and disadvantages, pharmaceutical applications. Differential Thermal Analysis (DTA): Principle, instrumentation and advantage and disadvantages, pharmaceutical applications. derivative differential thermal analysis (DDTA), TGA: Principle. instrumentation. factors affecting results, advantage disadvantages, pharmaceutical applications.

- 1. Spectrometric Identification of Organic compounds Robert M Silverstein, Sixth edition. John Wiley & Sons. 2004.
- 2. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman, 5th edition, Eastern press, Bangalore, 1998.

 3. Instrumental methods of analysis – Willards, 7th edition, CBS publishers.
- 4. Practical Pharmaceutical Chemistry Beckett and Stenlake, Vol II, 4th edition, CBS Publishers, New Delhi, 1997.
- 5. Organic Spectroscopy William Kemp, 3rd edition, ELBS, 1991.
- 6. Quantitative Analysis of Drugs in Pharmaceutical formulation P D Sethi, 3rd Edition, CBS Publishers, New Delhi, 1997.
- 7. Pharmaceutical Analysis Modern Methods Part B J W Munson, Vol 11. Marcel. Dekker Series
- 8. Spectroscopy of Organic Compounds. 2nd edn., P.S/Kalsi, Wiley estern Ltd.. Delhi.

ADVANCED PHARMACOGNOSY - I (MPG 102T)

SCOPE

To learn and understand the advances in the field of cultivation and isolation of drugs of natural origin, various phytopharmaceuticals, nutraceuticals and their medicinal use and health benefits.

meateme	ar ase and nearly serients.	
OBJEC	CTIVES	
Upon co	mpletion of the course, the student shall be able to know the, advances in the cultivation and production of drugs	
	various phyto-pharmaceuticals and their source, its utilization a medicinal value. various nutraceuticals/herbs and their health benefits Drugs of marine origin	and
	Pharmacovigilance of drugs of natural origin	
THEOR	RY 60 Hrs	
Ph Ag Cu Pra	lant drug cultivation: General introduction to the importance of 1 parmacognosy in herbal drug industry, Indian Council of Hyricultural Research, Current Good Agricultural Practices, parent Good Cultivation Practices, Current Good Collection actices, Conservation of medicinal plants- Ex-situ and Incurrent Conservation of medicinal plants.	2 rs
2 Ma pur in suc	arine natural products: General methods of isolation and 1	2 rs
3 Nu min Die Ant foo Re cor ber i) :	ntraceuticals: Current trends and future scope, Inorganic 1	2 rs

```
Phytopharmaceuticals: Occurrence, isolation and characteristic
4
                       features (Chemical nature, uses in pharmacy, medicinal and
                       health benefits) of following.
                       a)
                       Carotenoi °D ©%W %Ãø à ì é#o+~° v ...œT fÖN ¼ë »ð ÀÊ
                       \label{eq:condition} \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}  \label{eq:condition}
                       B §¬Wb1 BóaÁ
                                =Œa=³<á¶Ù8/bw_À_lüÕ_yà ±:P‡cð_C~åîà_Û€pä_«z¢øÀÀÒÏAHüJ°X
                                                                       X\P$_"Ž3_6=0^4\&''_i=\S_ti5i_HÎ^e_tiYe6+_I%_HD_1(7+$<-
                       GŽ
                       RO´j€____+Wé_:_n_o±àW€^__'Ák'Ka¼rpzK_^°á
                                - a"" \ddot{y} \ddot{A} r]_{Lls, "@,58 \r{Z}5} F' N@x \sim \#g' \r{A} \& | _N!' \ddot{A} @. A'
                       " |_0(|ác·†cøv_ fÖFÚÊíĐc_€o_|t|'ÄÒ,Öv__>|]_#Å'|(" ¢-
                       vc :t Obá~žÞP_×É.)ÄaŽN®F÷3@_ó'P9`p_Ãf^-
                             ÚŒXÿ_à_õ³[Ú_ÝÝ£·_·2~C_X l"_€í16NP_B_,7l4š¾-Ã[ Á -
                       0 Ns^ 8H.ÀGÿĐÀKÿ®nà bMÜ"8ië 0o @ / -
                       ___ü_ál>_È__àT0¢Èc__@©4†BF?€™`_#€õ ઼Þ"È% qQyD"À ò€T'^Ø
                                6el±,-Å__îZ__:oÑåä_V'êÌÎ""_÷øûù7ämb9È _Èv
                                _ÄÔrWF_¥Ö_€Î,,‡_ù!äÐ%__",A¹9_'_Đž´_rzûÿ_sq`28Ÿ_‹(7»_åyÔKr*Î_½
                       woØh¤_-^<¬MAÅe¥YDž Ý_fàx;]°Â_GAB2b_-
                       _£þëmñÄîO^€°LBÈ~Â7 q9j_ì_ë§_ÁÍŽ_"laÃø·<_éX%[!`_·Rç_c^?_8 oR6
                       Z_à_cÅ@Lš,,`__†%_Hž', ´___
                                _"ÀÇB¹Ü#ýÒÀ=_ç1ðÁœo)Àm√Á™ÖX_À¯I+?P@_PÌ£^T___+PîM
                                N\dot{a}<\_^{\circ}_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{a}jd}\bigcirc_{-\dot{
                       Qicp_ÀÊx~T_Ä´._rsIÇ ³_@&__
                       ¢ "9^ ãH üâO »sÙÉh TËáêãµý¹)Àò€Œ Åß... ² é< a1ÂV
                       \dot{Y}; \dot{Z}_p b \ddot{u} \cdot | \sim v[\dot{O}]
                                     \hat{u}ij8?...\hat{u} + \hat{a}\hat{A}\hat{u} \cdot G\hat{Y}_I\hat{B} S'V_bH \times \hat{a}\hat{u} \cdot G\hat{Y}_I\hat{B} S'V_bH \times \hat{a}\hat{
                       ë 'Î'o "-É Nž À ñ-
                       AUeaCepY')"60 C_ U!_Se op a>p_*'žU+oS-Xi±aD_b_UYR <math>U''+"_A
                                _9 \div 3«_aQ`Óÿ\divlÊñÙ|nlüP_7`_³Ž¶ùƉâž0(-
                       _Àá=?H+~_ÿì__ÒÛ...$ __¬_Ü_h€_':bŒë? _¤ _$_‡_Mpò_4¼Nè-
                       _í_âx_öÙ_b_æî 5P_bQ___÷c>8ã‰ùñ8 _l_øö_ 22_OŒ °@jÊ,A_- ¥_c_P
                       _ÂÂ_1~ŸÂó"´Ö™cû:í5€_€!Ï__a_Œ±ÂXŒA´C4+_À_Û]c¦»¥)cx_pr-
                       _-×à_34° p_"ÌE"Á@Â_27ÀÀ¹È7k_->î_2°_Ç%...°x_2Dxte°v;sq /_0",_1(qu_2,,á_2e£à
                       €Ô|">è7€H_|5;cÏêÌî____+#p6_5,2"Àÿ_(_.X&ÿî‡8äô_?'§ÃSÀ3__@#ü0VÅ
                       Ûxì-
                       øY,_«_çìDä_·°?À[ŒÀ____PñCù Òþ bĺ 8_ç"_Ñlĺ_j_dcå~_å...^å
                       _ 2œ_yç4_Wg`v^PμžDŒ¥; <aØ8
```

1/4

ö Á

ä

£

¥

À

\$ Ý

Ë

Χ

G

÷

=

ò

0

Œ

t

×

€.

‰

Υ

œ

J

¶

ë

œ

±